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Dear Colleagues, 
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presented at the first edition of Population Balance Modeling Webinar (PBMW) held on 

November 30th, 2023.  

 The objective of this webinar is to provide a platform for early career researchers (PhD 

students, recently graduated PhDs, and Postdocs) to discuss their latest progress and results 

in the field of population balance modeling. Our ambition is to collect contributions 

addressing the formulation, numerical strategies, experimental validation and/or coupling of 

population balance models with smaller or large-scale techniques in the fields of 

environmental, biological, pharmaceutical, and chemical processing. 

 We extend our sincere thanks to the members of the international scientific 

committee for their reviews, advice during the selection process, and the support during the 

preparation of technical program. Additionally, we express gratitude to all authors for 

submitting their abstracts.  

 We hope that this book of abstracts serves as a valuable reference for the 

contributions made at PBMW 2023.  
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The Webinar Chairs  
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ABSTRACT 
Ambr®250 vessels are commonly used miniaturised reactor systems for bioprocess development. They have 

increased the throughput of process development activity and are deemed cost-efficient due to their small 

operating volume. Ambr®250 bioreactors are suitable for scale-down experiments but require comparable 

hydrodynamic behaviour to reference large scale to ensure process consistency. Computational fluid 

dynamics (CFD) aided simulation of flow characteristics is a time-efficient means of screening suitable 

operating conditions. In this study, the bubble distribution and volumetric mass transfer have been simulated 

for Ambr®250 using an updated coupled CFD-PBM model to suit cell culture fluid characteristics. 

 

Keywords: Ambr®250, scale-down, computational fluid dynamics (CFD), bubble distribution, volumetric mass 
transfer  
 

1. INTRODUCTION 
Bioprocess development, particularly in the fields of biotechnology and pharmaceuticals, has witnessed 
significant advancements with the introduction of miniaturised reactor systems like the Ambr®250 vessels. 
These vessels have become invaluable tools for researchers and engineers, enhancing throughput and cost-
effectiveness by enabling operations at lower volumes. However, to fully harness the benefits of these 
miniaturised bioreactors, it is essential to ensure that their hydrodynamic behaviour closely mimics that of 
larger reference-scale systems. 
     Achieving comparable hydrodynamic behaviour to reference-scale reactors is critical for maintaining 
process fidelity across different scales. Computational Fluid Dynamics (CFD) provides a powerful means to 
predict and analyse fluid flow characteristics in the Ambr®250, enabling the rapid screening of suitable 
operating conditions. In this study, we employ CFD simulations, coupled with updated Population Balance 
Models (PBMs), to investigate the distribution of air bubbles and volumetric mass transfer in the Ambr®250 
using Ansys CFX.  

 

2. MATERIALS AND METHODS 
2.1. Geometry and meshing 
The Ambr®250 geometry was created in Ansys SpaceClaim. The dimension of Ambr®250 was retrieved from 
literature (Li et al., 2018) with the diameter of the tank, T= 62.5 mm and the height of the tank, H was 
maintained equivalent to 175 ml volume occupancy (Figure 1). The default tetrahedron mesh was used in 
the Ansys meshing tool with the advanced size function for proximity & curvature capture. To resolve the 
boundary layer profiles, an inflation of 1.2 growth rate and a maximum layer of 5 was assigned. A mesh 
refinement study determined the optimal mesh size, starting with 1.2 million cells up to 2.03 million cells. It 
is noted that the change of liquid velocity was insignificant for refinements beyond the 1.2 million mesh, so 
this mesh was used for further simulations. 
2.2. Numerical setup 
The system was modelled using the Eulerian- Eulerian multiphase model, and the impeller rotation has been 
modelled using Multiple Reference Frame (MRF) method. Since the density difference between the two 
phases (air and fluid) is high, the dispersed k-ɛ turbulence model was used. The bubble size distribution has 
been modelled using the population balance equations module in Ansys CFX.  
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Figure 1. Isometric view of the CAD and meshed geometry of Ambr®250 

In this work, the MUSIG(Multiple Size Group) discrete method was employed, in which a large variation of 
bubble sizes (bins) was specified to describe air as a polydispersed phase. Ten discrete bin sizes ranging from 
0.1 mm to 18 mm were applied, with 3.73 mm as the sole initial size (experimentally obtained by Li et al. 
(2018). Li et al. observed differences in the volumetric mass transfer rate in Ambr250 compared to 
experimental data, which can be attributed to using air-water mixture properties for simulation. The model 
parameters for Luo and Svendsen breakup (Luo & Svendsen, 1996) and Prince and Blanch coalescence (Prince 
& Blanch, 1990) models were updated to mimic cell culture fluid properties. For validation of CFD simulations, 
volumetric gas-liquid mass transfer rate (kLa) was calculated as the product of the mass transfer coefficient, 
kL (m s-1) and the specific surface area, a (m-1) for varied agitation rates- 300 rpm, 600 rpm and 650 rpm. 
Based on Higbie's penetration theory (Lamont & Scott, 1970), the mass transfer coefficient is given by: 

 
𝑘𝐿 =

2√𝐷′

√𝜋
 √
ε𝜌 

µ

4
 

1 

where D’ (m2 s-1) is the molecular diffusion coefficient, ε (m2 s-3) is the turbulent dissipation rate, ρ (kg m-3) is 
the density of the liquid and µ (Pa s) is the dynamic viscosity of the liquid. The interfacial area is calculated 
from the mean Sauter mean diameter d32 (m) as: 

 
𝑎 =

6 𝛼′

𝑑32
 

2 

where α’ is the gaseous volume fraction. 
 

3. RESULTS AND DISCUSSION 
The velocity magnitude and turbulent eddy dissipation rate (Figure 2) are high around the impeller and shaft 
region. Fluid velocity near the impeller tip is 0.5 m/s, which is in agreement with experimental tip speed  
 

 
Figure 2. Simulated hydrodynamic profiles of Ambr®250 for 600 rpm agitation rate and 0.02 vvm aeration 
rate (a)Velocity profile (b) Turbulence dissipation rate (c) Bubble size distribution  

range of 0.27 – 1.02 m/s reported by Bareither et al. for Ambr®250 under agitation speed range of 200 – 800 
rpm (Bareither et al., 2013). The mean particle diameter at 600 rpm shows that both the impellers are in 
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dispersed regime, while larger bubbles appear to accumulate near the top of the shaft (Figure 2(c)). kLa at 
varied agitation rates- 300 rpm, 600 rpm and 650 rpm (Figure 3) matches closely to experimental data. 

 
Figure 3 Parity plot for kLa for Ambr®250 at 300, 600 and 650 rpm agitation rates and 0.02 vvm aeration 
rates 

The parity plot has a root mean square error of 0.17, which has more accuracy than root mean square error 
of 0.3 reported by Li et al. in literature. This reduction in error can be attributed to the refinement in bin size, 
initial bubble size, bubble breakage and coalescence coefficients. 
 

4. CONCLUSIONS 
In this study, we used CFD to model bubble distribution and volumetric mass transfer rate (kLa) inside 
Ambr®250 bioreactors using updated Population Balance Models (PBMs). Our simulations aligned well with 
experimental data and enhanced our understanding of Ambr®250's performance at varied agitation rates. It 
is important to note that results are sensitive to model parameters (bin size, initial bubble size, bubble 
breakage and coalescence coefficients), and hence, the parameters must be based on experimental 
observations. Nevertheless, CFD simulations assist to help design and optimise bioreactor performance, 
requiring less time and fewer experiments, leading to faster delivery of biologics to the market. 
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Centrifugal creaming study of oil in water emulsions: Experimental and modeling 

approach 
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ABSTRACT 
In this study, we present an overview of the creaming phenomenon and its importance in concentrated 
emulsion systems. We discuss the underlying principles and mechanisms involved in creaming, including the 
influence of the preparation parameters and limitations related to light transmission in the used device. A 
mathematical model is then identified to describe the creaming behavior under centrifugation forces based 
on the convection-diffusion equation. 
 
Keywords: creaming, convection-diffusion model, centrifugal forces, concentrated O/W emulsions. 
 

1. INTRODUCTION 
Creaming is a common phenomenon observed in oil-in-water (O/W) emulsions, wherein the dispersed oil 
droplets tend to migrate toward the top of the emulsion due to the density differences. Understanding and 
predicting the creaming behavior of emulsions is crucial in various industrial applications, including food, 
pharmaceuticals, and cosmetics. However, this presents several challenges due to the difficulty in quantifying 
droplet-droplet and droplet-continuous phase interactions, and the lack of noninvasive and quantitative 
measurement techniques. Indeed, several measurement techniques were employed to evaluate the 
creaming due to gravity forces, such as NMR methods, turbidimetry, Raman spectroscopy, optical image 
analyzer or conductivity measurement. However, these studies are usually limited to some formulations of 
emulsions that would cream slowly under normal conditions (e.g. diluted emulsions, big droplets, low 
continuous phase viscosity). In emulsions that are more stable against creaming, such as concentrated 
emulsions, there is a need to accelerate the creaming phenomenon to be able to predict the creaming 
behavior during storage for longer periods. For this objective, a centrifugally induced transmission 
measurement technique would represent a powerful tool as it can induce fast creaming or sedimentation 
(Antonopoulou et al., 2018). 

To model creaming, many approaches have been used, involving computational fluid dynamics (CFD) or 
population balance models (PBM) when phenomena other than creaming occur (e.g. coalescence). Also, the 
convection-diffusion equation can be used to describe satisfactorily the binary creaming phenomenon (Deb 
et al., 2022) which is less computationally intensive. This model was however not evaluated for concentrated 
emulsions, due to the slow creaming behavior and lack of measurements of dense emulsions. 

Hence, this study focuses on the modeling and experimental investigation of creaming in highly 
concentrated O/W emulsions under centrifugal forces. The convection-diffusion equation is employed to 
monitor the concentration profiles along the height of the sample and over time.  

 

2. MATERIALS AND METHODS 
2.1. Emulsions preparation and characterization 
O/W emulsions were prepared using an Ultra-Turrax homogenizer. The viscosities of both phases, water for 
continuous and silicone oil as the dispersed phase, were varied as seen in Table 1. The used hydrophilic 
emulsifier is Polysorbate20 (Tween™ 20, Sigma-Aldrich) and is present at 0.5 w.t% in the continuous phase 
to ensure full monolayer coverage of the surface of the droplets and saturation of the continuous phase. 
Glycerol was used to modify the viscosity of the continuous phase (at 45.7 w.t % for the viscosity of 5 mPa.s, 
57.81 w.t % for 10 mPa.s and 66.3 w.t % for 20 mPa.s). 
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Table 1. Chemical ingredients properties. 

Material Viscosity µ (mPa.s) Density 𝛒 (Kg/m3) Refractive index nd 

Water Ultra-Pure 0.9914 999 1.3316 

Silicone oil  5, 10, 20, 50, 100 913, 930, 949,  
960, 970 

1.3953, 1.3986, 1.4006,  
1.4018, 1.4024 

Continuous phase 5 1000.19 1.392 

Continuous phase 10 1000.51 1.4087 

Continuous phase 20 1000.73 1.4419 

 
Granulometry measurements were carried out using a Mastersizer®, for samples taken before and after 

the creaming, and they validated that no coalescence of droplets occurred during the creaming time. 
The instrument used to monitor the creaming profiles along time and position is the LUMisizer®. In this 

device, a laser emits a beam of light through the tube containing the emulsion. The transmitted light is then 
measured over time and the sample height. It utilizes centrifugal forces to enhance the separation of 
emulsion droplets, allowing us to study highly dispersed emulsions in short periods of time.  

 

2.2. Modeling Approach 
The convection-diffusion equation is given by:  
 

 
𝜕∅𝑖

𝜕𝑡
+
𝜕(𝑢𝑖∅𝑖)

𝜕𝑧
=

𝜕

𝜕𝑧
(𝐷

𝜕∅𝑖

𝜕𝑧
)                                                                                                                       (1)      

 
This equation describes the transport of oil droplets within the emulsion sample and allows us to calculate 

the oil fraction (∅𝑖) over time (𝑡) and space (𝑧), for droplets of different diameters (𝑑𝑖). In addition, the model 
adds a correction factor (𝑛) to the velocity calculation to account for the dispersed phase hindering effect on 
the movement of the droplets, as follows: 

 

𝑢𝑖(𝑧, 𝑡) = 𝑢𝑡𝑖 (1 −
∅T

∅max
)
𝑛

                                                                                                                       (2) 

 

Different terminal velocity models are to be compared (i.e.: Kumar and Hartland, Stokes law), considering 
the centrifugal forces applied, besides the drag and buoyancy forces. The PDEPE function of MATLAB® is used 
to solve this model. Then, through experimental fitting, the two parameters 𝐷 and 𝑛 are identified for the 
different operating conditions varied. This identification is done in two cases: considering monodispersed 
emulsion (since the polydispersity index, PDI, is relatively small) and then taking the droplet size distribution.  
 

3. RESULTS AND DISCUSSION 
An example of the light transmission measured over the sample height with time is shown in Figure 1. The 
main limitation of this device is that when the oil fraction varies between 0 and 3 %, the light transmission 
decreases drastically to about 15 % (Figure 1 on the right). Therefore, the device does not allow accurate 
evaluation of fractions higher than 3%. Moreover, in the diluted region, due to the high variation of the 
transmission when the concentration increases, there is a big uncertainty on the prediction of very low oil 
fractions (<0.5 %). However, based on the information provided for the confidence interval (0.5 %-3 %), 
model fitting can be done. Another difficulty was observed when adding glycerol in the continuous phase, 
which was found to affect the optical aspect of the emulsion, altering the transmittance profiles and 
prohibiting the prediction of the dispersed phase concentration. This is due to the nonlinear variation in the 
transmission as a function of the ratio of the reflective indices of the dispersed and continuous phases 
(ndispersed/ncontinuous, Table 1). 
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Figure 1. The transmittance measurement in the Lumisizer (left) and the relation between transmission and 
oil fraction for a particular emulsion at one instance (right).  

An example of model simulation results compared to the experimental results of the Lumisizer is shown 
in Figure 2. The figure shows the height variation as a function of time corresponding to an oil fraction of 
2.5 %. Improvements and interpretations are still in progress for the parameter estimation and model fitting.  

 

Figure 2.  Height (when the emulsion reaches ϕ=2.5 %) as a function of time, for an emulsion with mean 

diameter d43=6.92 µm, µd=20 mPa.s and µc=1 mPa.s, ϕ0=40 % for identified D=2.510-8 m/s2 and n=2.5 

under centrifugation of 1000g m.s-2. 

 

4. CONCLUSION 
This study discusses the experimental evaluation of the creaming phenomenon and the governing equation 
and assumptions of the convection-diffusion model. The instrument used has limitations specifically in the 
detection range besides the influence of some additives on the optical properties of the medium and hence 
light transmission. However, it permits a proper investigation of the influence of the preparation parameters 
on the creaming process and hence the stability of concentrated emulsions.  
 

REFERENCES 
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ABSTRACT 
When modeling particle breakage, the use of a single dimension to characterize the particulate system is 
inadequate to account for both the variations in particle shapes and sizes. In this regard, effectively modeling 
multi-dimensional breakage using the population balance equation (PBE) requires the utilization of accurate 
and efficient numerical techniques. Amongst many potential numerical techniques, the Fixed Pivot 
Technique (FPT) and Finite Volume Schemes (FVS) are popular choices to resolve multi-dimensional breakage 
PBEs. However, whether there exists a general multi-purpose technique between the two remains unclear. 
Across all test cases with identical size domain and mesh, while both techniques exhibit comparable accuracy 
in resolving the moments, and exhibit similar computational efficiency (time taken by FPT relative to FVS is 

of 0~ (10 ) ), the choice of numerical technique is contingent upon the properties where accurate prediction 

is critical. To this end, FVS is the preferred choice when precise estimation of up to two properties is required 
owing to its simplicity, albeit requiring distinct schemes for different properties. Conversely, when more than 
two properties are crucial, the FPT is more suited as it preserves up to four properties in 2D. Overall, this 
work offers rational guidance for efficient and accurate modeling of multi-dimensional breakages. 

 
Keywords: multi-dimensional; population balances; breakage; fixed pivot technique; finite volume scheme 
 

1. INTRODUCTION 
Breakage is a phenomenon that results in the production of two or more smaller-sized daughter particles 
from a larger parent particle. While the use of a single internal coordinate (e.g., volume-equivalent diameter) 
to characterize a particulate system is common and convenient, crucial characteristics of particulate system 
are often multi-dimensional in reality. Therefore, in cases where tracking the behavior of a particle 
population with two internal coordinates is crucial, a traditional one-dimensional PBE is no longer adequate, 
demanding the use of a two-dimensional (2D) or Bivariate Population Balance Model (2D-PBM). 

Solving multi-dimensional PBEs is a non-trivial task fraught with complexities due to their partial 
integro-differential nature. While the method of moments and its variants are simple, computationally 
inexpensive, and capable of predicting the moments of distributions with high accuracy, they are not 
designed to capture the dynamics of the entire particle size distribution and renders additional processing to 
reconstruct the number distribution. To this end, the FPT and FVS have emerged as appealing techniques for 
solving multi-dimensional breakage PBEs, owing to their ability to accurately predict the transients of the 
complete number density and moments with reasonable computational efficiency. However, an objective 
comparison of their performances is lacking. In the literature, 2D FPT was only investigated for pure 
aggregation and simultaneous aggregation and breakage problems, but pure breakage problems were not 
adequately studied (Vale and McKenna, 2005, Chakraborty and Kumar, 2007, Nandanwar and Kumar, 2008). 
In contrast, the simple implementation of FVS schemes by Saha et al. (2019), which conserves up to two 
moments, have proven promising. However, it remains to be seen how the formulation of FVS affects its 
performance, as opposed to the 2D FPT which preserves up to four properties, as far as solving multi-
dimensional breakage PBEs is concerned. Insofar, a clear and objective assessment between the FPT and FVS 
is imperative for a more informed knowledge of their performances for solving multi-dimensional PBEs. 

In this work, the performances the FPT (Kumar and Ramkrishna, 1996) and FVS (Scheme 2b of Saha 
et al. (2019)) are compared and examined with the aim of providing valuable insights into their numerical 

mailto:suet.leong@monash.edu
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capabilities and limitations for solving multi-dimensional breakage PBEs. The techniques are assessed using 
relative error indicators and are benchmarked against analytical solutions. 

 

2. COMPUTATIONAL SETTINGS 
2.1. Model Configuration 
In this work, we employ a finite domain of internal coordinates v  and w  of range 

9 9

min max min max[ , ] [ , ] [10 , 2] [10 , 2]v v w w − − =  . For all case studies, we employ a geometric mesh with 25 × 25 

grid points (geometric ratio   3) across the computational domain. Additionally, we adopt a monodisperse 

initial distribution 
max max( , ,0) ( ) ( )n v w v v w w= − −  . The solutions were computed on a workstation 

equipped with an Intel® CoreTM i5-1135G7 CPU with a clock speed of 2.40 GHz and 16 GB installed memory.  
 
2.2. Case Studies and Performance Indicators 
We evaluate the performance of the FPT and FVS by testing them against known solutions. Here, 2D 
breakages that conserve the first-order moments are studied, as tabulated in Table 1. Due to the absence of 
analytical solutions for number density, we benchmarked the numerical solutions for moments. 
 

Table 1. Cases employed in this study. ( , , ', ')v w v w  is the stoichiometric kernel for particle of size ( , )v w  

due to the breakage of parent particle of size ( ', ')v w , ( , )v w  is the breakage rate kernel, ( )anaM t
 is the 

analytical moments of order   and   with respect to v  and w , respectively, and maxv  and maxw  are the 

maximum sizes in the computational domain. Analytical moments are obtained from Saha et al., 2019. 

Case ( , , ', ')v w v w  ( , )v w  Analytical Moments, ( )anaM t  

1 
2

' 'v w
 1 max max

2
( ) exp 1

( 1)( 1)

  
= −  

+ +  

anaM t v w t 


 

 

2 
2

' 'v w
 v w+  

00 max max( ) 1 ( )= + +anaM t v w t  

10 max( ) =anaM t v , 
01 max( ) =anaM t w  

 

Note that the internal coordinates need not be size related, where they can represent other properties of 
the particle, such as size and composition, or mass and energy. These entities are expected to be conserved 
upon binary breakage (Cases 1-2). The results are assessed using the following time-averaged relative error: 
 

1

( ) ( )1

( )=

−
= 

ana numF
j j

ana
j j

M t M t

F M t

 





                                            (1) 

 

where F  is the total number of time points. The superscript ‘ana’ denotes analytical and ‘num’ denotes 
either FPT and FVS. 
 

3. RESULTS AND DISCUSSION 
Figure 1a shows that both the FPT and FVS predict the zeroth moment satisfactorily for size-independent 

breakage (Case 1), demonstrating similar performance with 3

00 ~ (10 ) −  across different meshes. 

Interestingly, the FVS outperforms the FPT in predicting the first-order moments, with 13

10 01 ~ (10 )  −+   

compared to the FPT, with 5~ (10 )− . This can be attributed to the intrinsic characteristic of the FVS (Scheme 

2b of Saha et al. (2019)) as it was devised to conserve the first-order moments. However, the FVS shows poor 

accuracy in predicting the hypervolume 11M , with 
11 1~ (10 )− , whereas the FPT achieves an error of 

10

11 ~ (10 ) − , indicating better performance. Therefore, while the FVS is simple to implement with 

reasonable accuracy, it suffers issues in resolving higher-order moments, which are important properties 
(e.g., the total area of particles) for certain applications. In this regard, the FPT would be a more suitable 
choice if more than two moments are crucial. For size-dependent breakage (Case 2), on the other hand, both 
the FPT and FVS show good agreement with the analytical zeroth moment with an error of 4

00 ~ (10 ) −  and 
2~ (10 )− , respectively, as seen in Figure 1b. Further, quantitative results indicate that the FVS outperforms 
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the FPT in predicting the first-order moments, achieving a remarkable average relative error of 
15

10 01 ~ (10 )  −+   compared to 4~ (10 )−  by the FPT. As for the computation times, results indicate that, 

for both cases, the two methods are comparable, taking ~ 2s to resolve the simulation up to 10t = .  
 

 
Figure 1. (a) Case 1 and (b) Case 2: A comparison between the FPT and FVS against analytical solution, in 

predicting the moments of distribution M  of order   and   with respect to v  and w , respectively. The 

moments are normalized against the initial analytical moments of identical order.  
 

4. CONCLUSIONS 
In this study, we evaluate the performance of two state-of-the-art techniques, i.e., FPT and FVS, for solving 
pure breakage 2D-PBEs. Our results reveal that, while both the FPT and FVS exhibit relatively comparable 
accuracy in predicting the moments of distributions and in their computation times, the selection of 
numerical technique hinges on the properties/moments that necessitate precise estimation. When up to two 
important moments are critical for observation, the FVS is the preferred option attributing to its simpler 
formulation, although necessitating distinct schemes for conserving different properties. In contrast, the 
more complex FPT offers versatility by effectively balancing accuracy and the ability to preserve up to four 
properties in 2D, rendering it adequate for general usage. Further, for the conservation of other properties, 
the FPT formulation is flexible in adapting to the properties of choice, whereas the FVS requires redesign. 
Equipped with an understanding of the capabilities of numerical techniques in solving multi-dimensional 
breakage PBM, we can anticipate an increased utilization of the population balance model for precise control 
over the dynamics of multi-dimensional particles across a diverse range of applications.  
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ABSTRACT 
Under external forces, particles may experience fragmentation while at the same time lose their mass 
through shrinkage, and ultimately dissolve into the continuous phase. However, the mass- and number- 
expending processes cause the tracking of the particle size distribution to be highly non-trivial. In this work, 
a comprehensive sectional scheme that combines the Fixed Pivot (FP) discretization and moving grid system, 
called the modified moving-grid technique (m-MGT), is introduced to resolve the PBEs that involve 
fragmentation, shrinkage and dissolution. 

 
Keywords: population balances, moving grid, grid elimination, mass-expending, number-expending 
 

1. INTRODUCTION 
Mass- and number- expending fragmentation is a pivotal particulate phenomenon observed in various 
processes such as the processing of pharmaceutical substances. In this process, particles lose mass through 
shrinkage while simultaneously undergoing fragmentation. As time progresses, particles will eventually 
undergo dissolution and vanish, resulting in a decrease in total particle count. To model this process, 
Population Balance Equations (PBE) that characterizes the temporal evolution of the number density of the 
dispersed phase entities, is the fundamental approach. However, due to the intricacy exhibited by the mass- 
and number- decreasing fragmentation PBE, i.e., Eq. (1), in the form of hyperbolic partial-integro differential 
equation, generalized analytical solutions are not commonly available.  

While there is a substantial number of numerical methods available for solving the pure fragmentation 
PBEs and size expanding classes of PBEs, the literature is sparse when it comes to finding the numerical 
solution to the PBEs that involve fragmentation, shrinkage and dissolution. There are only some recent works 
which addressed the simultaneous fragmentation and shrinkage PBEs (Bertin et al., 2016; Wu et al., 2017; 
Yuan et al., 2012). A successful numerical approximation of PBEs also hinges on the preservation of the 
fundamental moment-based properties. In this regard, the state-of-the-art sectional technique, i.e., the 
Moving Grid (MG) technique developed by Kumar and Ramkrishna (1997) is a compelling strategy as it 
preserves moments and is free from numerical diffusion. In this study, we present a modified Moving Grid 
technique (m-MGT), which incorporates a left moving grid to reflect shrinkage while eliminating grid points 
to realistically mimic dissolution and uses the principle of FP to ensure the preservation of important 
moments (Tiong et al., 2023). 

𝜕𝑛(𝑣,𝑡)

𝜕𝑡
+

𝜕

𝜕𝑣
[𝑐(𝑣)𝑛(𝑣, 𝑡)] = ∫ 𝛽(𝑣,𝑤)𝛤(𝑤)𝑛(𝑤, 𝑡)𝑑𝑤 − 𝛤(𝑣)𝑛(𝑣, 𝑡)

∞

𝑣
 (1) 

 

2. THEORETICAL FRAMEWORK 

2.1. Discrete Equations for Simultaneous Shrinkage, Dissolution and Fragmentation 
The fundamental framework of the MG technique is built upon the synergy between the method of 
characteristics and the FP discretization. In particular, the shrinkage term is handled by the method of 
characteristics whereas the breakage terms are dealt with by the FP technique (Kumar and Ramkrishna, 
1996), on the condition that the grid points, which represent the particle sizes, are now a function of time. 
For simplicity, we write the grid specific variables: 𝑥𝑖(𝑡) and 𝑣𝑖(𝑡) as 𝑥𝑖 and 𝑣𝑖, and also present the final 
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implementable formulation in this section. Discretizing the simultaneous shrinkage, dissolution and 
fragmentation PBEs gives the following 

𝑑𝑁𝑖(𝑡)

𝑑𝑡
= ∑ 𝜂𝑖𝑘𝛤𝑘𝑁𝑘(𝑡)

𝑀
𝑘=𝑖 − 𝛤𝑖𝑁𝑖(𝑡)  (2) 

Here, 𝑁𝑖  is the number of particles in the i-th bin, 𝑀 is the numbering of the final bin. The mean value theorem 
is employed to compute the average number density, i.e., 𝑛𝑖 = 𝑁𝑖 (𝑣𝑖+1 − 𝑣𝑖)⁄ . Moreover, 𝜂𝑖𝑘  is the 
fractional allocation of particles due to fragmentation. For the exact preservation of the zeroth and the first 
moments (total mass and number, respectively), 𝜂𝑖𝑘  is given by 

𝜂𝑖𝑘 = ∫ [
𝑥𝑖+1−𝑣

𝑥𝑖+1−𝑥𝑖
] 𝛽(𝑣, 𝑥𝑘)𝑑𝑣

𝑥𝑖+1
𝑥𝑖

+ ∫ [
𝑣−𝑥𝑖−1

𝑥𝑖−𝑥𝑖−1
] 𝛽(𝑣, 𝑥𝑘)𝑑𝑣

𝑥𝑖
𝑥𝑖−1

 (3) 

where 𝑥𝑖 is the i-th grid points or the representative sizes for the i-th bin, 𝛽(𝑣, 𝑥𝑘) is the daughter distribution 
function. In addition, the shrinkage term is considered through the following equations: 

𝑑𝑣𝑖

𝑑𝑡
= 𝑐(𝑣𝑖)  (4) 

𝑑𝑥𝑖

𝑑𝑡
= 𝑐(𝑥𝑖)  (5) 

Here, 𝑐(∙) is the shrinkage rate and 𝑣𝑖 are the bin boundaries. Equations (4) and (5) suggest that both 𝑣𝑖 and 
𝑥𝑖 travel at the velocity equivalent to the shrinkage rate, which is always negative. However, the left-moving 
grid here presents a new challenge unprecedented in the earlier work. It causes the grid points to intersect 
at zero and move into the negative domain due to dissolution. Thus, special considerations are needed here. 

2.2. Strategy for Resolving the Dissolution of Particles 
As alluded to in the preceding section, the left moving grid requires a proper refinement such that it can 
accurately capture the decline in particle count due to dissolution of particles when their sizes approach 
asymptote zero. We address the issue by discarding the existing bin one by one at predesignated temporal 
intervals. To provide a clear and concise picture of the approach, we herein consider that all particles in the 
system are arbitrarily larger than asymptote zero, which we approximate using the point of dissolution of 1e-
8. Dissolution occurs when 𝑣1 coincides at the point due to continuous shrinkage. The time frame before 
dissolution occurs, 𝑡s can be determined as follows: 

∫ 𝑑𝑡
𝑡𝑠
0

= ∫ 𝑐(𝑣1)𝑑𝑣
0

𝑣1
  (6) 

Evidently, both 𝑥𝑖 and 𝑣𝑖 will start crossing over into the negative domain without any particular 
treatment. To resolve this, we first restrict the movement of 𝑣1 by assigning a velocity of zero, i.e., 𝑑𝑣1 𝑑𝑡⁄ =
0. On the other hand, the velocity of 𝑥1 is also modified so that it stays in the middle of the first bin 

𝑑𝑥𝑖

𝑑𝑡
=

1

2
(
𝑑𝑣1

𝑑𝑡
+
𝑑𝑣2

𝑑𝑡
)  (7) 

Following this, Eqs. (2)-(5) together with Eqs. (6) and (7) are computed over a specific time interval, ∆𝑡 
until 𝑣2 intersects at zero. This time interval can again be evaluated using the concept presented in Eq. (6), 

i.e., ∫ 𝑑𝑡
𝑡𝑠+∆𝑡

𝑡𝑠
= ∫ 𝑐(𝑣2)𝑑𝑣

0

𝑣2
. At this point, the first bin is eliminated because 𝑣1, 𝑥1 and 𝑣2 coincides at zero 

concurrently, which implies that the particles here are completely dissolved. The remaining bins are now 
renumbered, and the process persists until either the designated simulation duration is reached or all the 
bins are eliminated.  

 

3. RESULTS AND DISCUSSION 
To exemplify the capability of the m-MGT, we assess the numerical results against the established analytical 
solutions for simultaneous shrinkage, dissolution and fragmentation PBEs with an exponential initial 
condition. For easier interpretation, the time scale is standardized against the time at which 99% of the initial 
mass is depleted and the moments are normalized against their respective initial moments. Fig. 1(a)-(c) show 
the results for fragmentation dominant scenario whereas Fig. 1(d)-(e) display the results for shrinkage 
prominent scenario. Figure 1a) and d) show that the m-MGT provides accurate predictions for the transients 
of the number density until the very late phase where 99% of the mass is exhausted. The number density 
distribution in a) is shifted towards the left due to the substantial size reduction as a result of fragmentation 
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predominance. The accurate approximations of the zeroth moment in Figure 1b) and e) suggest that the bin 
elimination routine captures the dynamics of the particle number satisfactorily. Notably, for the 
fragmentation dominant case, the total number count shows an initial increase, indicating the dominance of 
fragmentation in the early phase. The decline at the middle stage is due the inherent nature of the system, 
which shrinkage prevails over fragmentation as the particles become smaller. On the other hand, for the 
shrinkage dominant case, the particle count continues to decline throughout the process. Furthermore, it is 
worth noting that the continuous left moving grid allows the decline in the first moment or the total mass of 
the particle population to be precisely estimated. The simulation results here suggest that the m-MGT 
robustly handles the simultaneous shrinkage, dissolution, and fragmentation process even in the asymptotic 
scenarios where either shrinkage or fragmentation is dominant. 

 
Figure 1. Comparison of fragmentation-dominant scenario (a-c) and shrinkage-prominent (d-f) scenarios 

against the analytical solution with coefficients of c(v) = - 0.1 and -100 respectively, fragmentation rate of 
Γ(v) = v and stoichiometric kernel of β(v,w) = 2/w 

 

4. CONCLUSIONS 
The m-MGT proposed in this work resolved the unique challenges posed in accurately simulating the 
dynamics of particles experiencing shrinkage, dissolution, and fragmentation concomitantly. All the features, 
i.e., the continuous moving grid, stepwise bin elimination at the lower end of the particle size spectrum and 
FP discretization, are crucial to ensure the accurate predictions of the number density profiles and important 
moments of interest. As the current work only includes the size-diminishing process, there is a potential 
requirement for further modifications and advancement to incorporate size-expanding processes such as 
growth and aggregation. 
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ABSTRACT 
Dispersion-making devices are known to produce bimodal and other more complex shaped size distributions, 
starting with initial monomodal distributions. Unfortunately, even empirical breakup frequencies and 
daughter size distribution functions for real-time control are unavailable. This study presents a new method: 
identification of distinct drop breakup modes and assigning them unknown weights and parameters through 
Genetic Algorithms driven fit to evolving size distribution data. The approach can potentially identify active 
breakup modes and map them to physical zones in a device based on the required flow field for a breakup 
mode to exist. We focus on the primary-secondary mode observed in shear fields. The developed daughter 
size distribution function captures the transition from monomodal to bimodal sizes with the help of a specific 
error estimator for the Genetic Algorithms optimizer. 
 

Keywords: population balance model; high shear mixers; bimodal DSDs; fixed pivot technique 
 

1. INTRODUCTION 
The size distribution of fine drops in an emulsion influences its stability, texture, and appearance. Despite a 
minimal increase in energy during emulsion formation (0.02% to 0.06% of total input), sustaining a complex 
flow field is energy intensive. The lower limit on necessary energy is unknown. Minimizing it for a target drop 
size distribution is a key goal. Evolving size distributions in industrial units rarely follow a self-similar pattern, 
making traditional approaches ineffective. Fitting data to empirical breakage functions for mixer control does 
not address energy efficiency improvements through modified internals. 
 We propose a framework based on literature findings, highlighting characteristic features in various 
drop breakup modes. For instance, within a shear field, a drop can break into two primary and several 
secondary drops (Cristini et al., 2003). The evolving size distribution captures cumulative features from all 
active breakup modes in a device. The weighted contribution of these modes—active, dormant, or 
simultaneous—changes over time with the evolving size distribution. Using the population balances 
framework, we predict the size distribution for multiple breakup modes, employing a set of functions tailored 
to operating modes. Our focus is on high-shear devices, identifying a minimal set of governing drop breakup 
modes. Genetic Algorithm is used to fine tune the description of operating breakup modes for a given set of 
evolving size distributions and determine wights of operating breakup modes.  The mapping of the operating 
modes to device is the next step for design modification.   

 In summary, this research focuses on the nuanced exploration of active breakup modes within a 
dispersion device using the evolving size distributions. By deciphering the operating fundamental modes and 
optimizing their parameters through design modification, the proposed framework seeks to enhance our 
understanding of emulsion formation and development of energy efficient devices in industrial applications. 

 

2. METHODS 
We combine functions for the expected modes of drop breakup with weights assigned to each one to fit 
experimentally measured evolving size distributions. The population balance equation for a well-mixed 
system is discretized using the fixed pivot technique of Kumar and Ramakrishna (1996).  For multiple modes 
of drop breakup operating concurrently and independently (assumed), the discretized equation takes the 
following form: 

  
𝒅𝑵𝒊(𝒕)

𝒅𝒕
= −(∑ 𝒘𝒋𝜞𝒊

𝒋
𝒂𝒍𝒍 𝒋 )𝑵𝒊(𝒕) + ∑ 𝜷𝒊,𝒌(∑ 𝒘𝒋𝜞𝒌

𝒋
𝒂𝒍𝒍 𝒋 )𝑵𝒌(𝒕) ,   𝒊 = 𝟏 𝒕𝒐 𝑴                               𝑴

𝒌=𝒊 (1) 

 

 𝜷(𝒗, 𝒗′) =∑ 𝒘𝒋𝜷𝒋(𝒗, 𝒗′)
𝒂𝒍𝒍 𝒋
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Here, 𝑁𝑖  is the population of drops at ith pivot per unit volume, 𝛤𝑖  their breakup frequency, and 𝜷𝒊,𝒌 the 

number of drops formed at ith pivot size when drops at kth pivot break. The 𝒘𝒋 denotes the weight assigned 

to jth mechanism. 
We consider four distinct drop breakup modes: 1) unequal binary breakup, 2) primary-secondary breakup, 
3) erosion, and 4) shattering, depicted in Figure 1(a). Each mode is represented by a unique non-overlapping 
family, mathematically expressed through a parameterized function allowing precise adjustments within a 
broad class. Unlike employing a polynomial basis set for the daughter size distribution function (Sathyagal et 
al., 1995), the selected modes represent the varied physics of drop breakup in dispersion devices reported in 

the literature. The primary-secondary breakup mode, 𝜷𝟐(𝒗, 𝒗′), elucidates the disintegration observed in 
shear fields (Cristini et al.,2003). Here, a parent drop undergoes division into two primary drops, and multiple 
secondary drops. The daughter-size distribution function, shown in Figure 1(b), is the first attempt in this 
direction. This function contains parameters for the number of secondary drops formed, the volume of 
secondary drops, and a shape parameter for the distribution of secondary drops. The widely used model in 
the literature for binary unequal breakup developed by Diemer and Olson (2002) characterizes the first mode 
of breakup shown in Fig. 1(a). The parameters in the functions are determined using GA. The latter however 
required the development of a novel objective function from data-driven learning (using experimental data) 
to facilitate the successful convergence of GA optimizers. The error estimator addresses the challenge faced 
by near zero discretized populations as the GA driven iterations continue to march towards convergence.   

 
 
 

 

 

Figure 1. (a) The four basic modes of drop breakup. (b) Primary secondary drop breakup daughter size 
distribution for various values of parameters. (c) Generation of bimodal size distributions using primary 
secondary daughter size distribution function from monodispersed I.C and power law breakup frequency. (d) 
Data from Hert and Rodgers (2017) predicted using modes. 

 

(𝑎) (𝑏) 

(𝑐) (𝑑) 
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3. RESULTS AND DISCUSSION 
The outcome of particular significance pertains to the primary-secondary mode of drop breakup. The 
daughter size distribution function characteristic of this mode exhibits a diverse range of potential shapes, 
as visually illustrated in the accompanying figures. Commencing with an initial monodisperse size distribution 
and applying the simplest power law breakage frequency, the mode facilitates the generation of bimodal and 
multimodal size distributions, shown in Figure 1(c). The continued refinement of the kernel model has been 
prompted by the necessity to accommodate additional physics. This includes scenarios where varying 
numbers of secondary drops are formed from parent drops of differing sizes while maintaining a consistent 
mean size for secondary drops. This model refinement validates experimental findings reported in the 
literature (Hert & Rodgers, 2017), thus affirming the active participation of specific breakup modes within 
mixing processes. Figure 1(d) shows the prediction of the drop size distribution for experimental data (Hert 
& Rodgers, 2017) using the basic modes formulation. The contribution from the primary-secondary mode is 
20%, and 80% from the unequal binary breakup when only the first and second modes were active. The small 
peak on the smaller drop side was not captured even by allowing two modes to be active. 
 

4. CONCLUSIONS 
We solve the inverse problem of population balance by introducing “basic modes” of drop breakup. 
Distinguishing our work from existing studies, these modes offer a more comprehensive understanding of 
the intricate droplet fragmentation mechanisms at play in a device. Robust mathematical models are 
developed to represent these basic modes, with parameter estimation facilitated through the application of 
genetic algorithms. The intriguing phenomenon observed in high shear mixing scenarios is the transformation 
of an initially monomodal droplet size distribution into a bimodal distribution, a behavior challenging to 
predict using conventional breakage functions. Nevertheless, our approach exhibits promise in 
comprehending such intricate evolutions.  The results demonstrate the potential of the proposed approach 
to unravel the complexities of drop size distribution evolution in emulsification processes within mixers. A 
further emphasis is drawn on the importance of appropriate objective functions for this problem, which alone 
can lead to convergence and estimation of parameters while solving inverse problems using an optimizer.  
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ABSTRACT 
The multi-zone circulating reactor (MZCR) technology is an emerging and advanced olefin polymerization 
process, which allows the production of intimate mixtures of polyolefins with widely varying properties. In 
this study, a multi-model coupling method is proposed to understand the characteristics of gas-phase 
propylene polymerization in a multizone circulating reactor. The developed model which couples the kinetic-
based moment method, the chain length distribution model and the steady-state population balance model 
can be used to simultaneously account for the molecular and particle properties of polypropylene within the 
whole MZCR. Three key operating variables linked to product properties involving gas barrier conditions, 
catalyst conditions, and gas velocities are examined. The simulation results demonstrate that a wide range 
of polymer properties can be obtained by varying the reactor operating conditions. The MZCR technology 
offers tremendous advantages in flexibly tuning the molecular and particle properties of products as 
compared to the conventional fluidized beds, loop reactors and stirred bed reactors. The current study can 
offer some guidance for tailoring polymers with specific particle size and molar mass distributions. 

 
Keywords: multi-zone circulating reactor; gas-phase propylene polymerization; method of moments; 
population balance model; chain length distribution 
 

1. INTRODUCTION 
The preparation of propylene within the multi-zone circulating reactor (MZCR) is an advanced technology, 
which greatly improves the property of polymers (Govoni and Mei, 2001). Applying versatile modeling 
methods to investigate particle-size-related properties have received extensive attention with the rapid 
development of computer technology. In this work, a coupled model integrating the kinetic-based moment 
method, the chain length distribution model, and the steady-state PBM is developed. The impacts of gas 
barrier, catalyst conditions and riser gas velocities on the molecular and particle properties of the resulting 
polymers within the whole MZCR are investigated.  
 

2. MATERIALS AND METHODS 
2.1. Propylene polymerization kinetics and MZC Reactor model 
Herein, a kinetic model is developed for propylene polymerization catalyzed by the Ziegler-Natta catalyst 
(Zacca and Ray, 1993). The polymerization mechanism involves the formation of active sites, initiation of 
active sites, chain propagation, chain transfer and chain deactivation. The mathematical equations for the 
monomer can be derived as follows (Fernandes and Lona, 2004):  
𝑑𝑀

𝑑𝑧
= −

𝑅𝑝(1−𝜀
𝑟)

𝑢0𝜀
𝑟 = −

𝑅𝑝(1−𝜀
𝑟)

𝑢𝑔
                                                                                                                                             (1) 

where M denotes monomer, z represents the length along the reactor tube, 𝜀𝑟 is bed porosity in the riser, 
and 𝑢𝑔 represents gas velocity. 

2.2 Steady-state population balance model 
Following Levenspiel et al. (Levenspiel et al, 1968) the particle-size distribution in the MZCR can be described 
by the following closure equation (Luo et al., 2009; Santos et al., 2006): 

∫ 𝑃𝑏(𝐷)𝑑𝐷 = 1
𝐷𝑚𝑎𝑥
𝐷0

                                                                                                                                                        (2) 

The steady-state mass balance equation for the particle size between D, D+ΔD can be described by 
equation (3). The model mainly takes into account the effect of particle growth and attritions on particle size. 
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{
𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔
𝑤𝑖𝑡ℎ 𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡 𝑓𝑒𝑒𝑑

} − {
𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑙𝑒𝑎𝑣𝑖𝑛𝑔 𝑖𝑛
𝑡ℎ𝑒 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 𝑠𝑡𝑟𝑒𝑎𝑚

} + {

𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔 𝑡ℎ𝑒
𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑓𝑟𝑜𝑚 𝑎 𝑠𝑚𝑎𝑙𝑙𝑒𝑟
𝑠𝑖𝑧𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑝𝑜𝑙𝑦𝑚𝑒𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛

} −

{

𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑙𝑒𝑎𝑣𝑖𝑛𝑔 𝑡ℎ𝑒
𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑡𝑜 𝑎 𝑙𝑎𝑟𝑔𝑒𝑟 𝑠𝑖𝑧𝑒
𝑑𝑢𝑒 𝑡𝑜 𝑝𝑜𝑙𝑦𝑚𝑒𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛

} + {
𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔 𝑡ℎ𝑒
𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑓𝑟𝑜𝑚 𝑙𝑎𝑟𝑔𝑒𝑟
𝑠𝑖𝑧𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛

} − {
𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑙𝑒𝑎𝑣𝑖𝑛𝑔 𝑡ℎ𝑒 
𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑡𝑜 𝑎 𝑠𝑚𝑎𝑙𝑙𝑒𝑟 
𝑠𝑖𝑧𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛

} +

{
𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑚𝑎𝑠𝑠
𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝐷, 𝐷 + 𝛥𝐷

𝑑𝑢𝑒 𝑡𝑜 𝑝𝑜𝑙𝑦𝑚𝑒𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛
} − {

𝐿𝑜𝑠𝑠 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑚𝑎𝑠𝑠
𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝐷, 𝐷 + 𝛥𝐷

𝑑𝑢𝑒 𝑡𝑜 𝑎𝑡𝑡𝑟𝑖𝑡𝑖𝑜𝑛

} = 0                                                  (3a) 

𝐹𝑐𝑃𝑐(𝐷𝑖)∆𝐷 − 𝐹1𝑃𝑏(𝐷𝑖)∆𝐷 +𝑊𝑏𝑃𝑏(𝐷𝑖−1)𝑅𝑝(𝐷𝑖−1) −𝑊𝑏𝑃𝑏(𝐷𝑖)𝑅𝑝(𝐷𝑖) +𝑊𝑏𝑃𝑏(𝐷𝑖+1)𝑅𝑎(𝐷𝑖+1) −𝑊𝑏𝑃𝑏(𝐷𝑖)𝑅𝑎(𝐷𝑖) +

𝑊𝑏
3𝑅𝑝(𝐷𝑖)

𝐷𝑖
𝑃𝑏(𝐷𝑖)∆𝐷 −𝑊𝑏

3𝑅𝑎(𝐷𝑖)

𝐷𝑖
𝑃𝑏(𝐷𝑖)∆𝐷 = 0                                                                                                              (3b) 

Then, the equation (3b) is solved to yield: 

𝑃𝑏(𝐷) = {

0 𝐷 ≤ 𝐷0
𝐹𝑐

𝑊𝑏𝑅𝑟(𝐷)
(
𝐷

𝐷0
)
3

𝐼(𝐷, 𝐷0
+) 𝐷0

+ ≤ 𝐷 ≤ 𝐷𝑚𝑎𝑥

0 𝐷 > 𝐷𝑚𝑎𝑥

                                                                                                       (4) 

𝑅𝑟(𝐷) = 𝑅𝑝(𝐷) − 𝑅𝑎(𝐷)                                                                                                                                                   (5) 

𝐼(𝐷, 𝐷′) = 𝑒𝑥𝑝 (−∫
𝐹1

𝑊𝑏𝑅𝑟(𝐷
′′)

𝐷

𝐷′
𝑑𝐷′′)                                                                                                                                (6) 

The above equation (4) is the analytical solution form of the particle density function (𝑃𝑏(𝐷)) for the case 
of uniform-size catalyst feed. F represents the mass flow rate, with the subscript 1 denoting product 
discharging and c indicating the catalyst. Wb is the bed weight, D is the particle size with the subscript 0 
denoting the initial size and max indicating the maximum size, Ra is the attrition rate and Rp is particle growth 
rate. 

 

3. RESULTS AND DISCUSSION 
3.1 Propylene polymerization in the MZC reactor with gas barriers 

 
Figure 1. Instantaneous particle size distribution of polymers for: (a) different parts of the reactor and (b) 

different settings of gas barrier. 

Herein, the effect of gas barrier on the molar mass of resulting polymers is investigated while the other 
operating conditions remain unchanged. The particle size distribution of polymers at various parts in the 
downer is illustrated in Figure 1 (a).  
3.2 Propylene polymerization under various catalyst conditions 

 
Figure 2. Instantaneous particle size distribution of polymers for: (a) different catalyst flow rates, and (b) 

different initial size of catalyst. 
The catalyst flow rate determines the concentration of active sites, which further affects the polymerization 
rates as well as the molar mass of polymers. Furthermore, the particle size of resulting polymers is strongly 
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dependent on the initial size of the catalyst particles. Figure 2 demonstrates the effect of the catalyst flow 
rates and initial catalyst size on the instantaneous particle size distribution at the outlet of the downer.  
3.3 Propylene polymerization under various gas velocities 
Herein, several simulation cases with gas velocities in the range of 3 m/s to 15 m/s are implemented to 
investigate the influence of riser gas velocities on the instantaneous particle size distribution of product, as 
seen in Figure 3. 

 
Figure 3. Instantaneous particle size distribution of polymers at different riser gas velocities. 

 

4. CONCLUSIONS 
A comprehensive model coupling the kinetic-based moment method, the distributed characteristics model 
and the steady-state population balance model is developed to account for the propylene polymerization 
process. The simulation results indicate that the molecular and particle properties of the resulting polymers 
can be tuned by operating parameters. Major conclusions involve: a) Increasing the hydrogen concentration 
in the gas barrier can reduce the molar mass of polymers, but has a negligible impact on the particle size 
distribution of polymers. b) Polymer particles with larger sizes and wider PSD can be produced from catalyst 
particles with larger initial size. c) Increasing the riser gas velocities within the range of 3 to 10 m/s can 
significantly increase the particle size of the resulting polymers. However, its effect becomes weak when the 
gas velocities exceed 10 m/s. The study presented here shows that the multi-zone circulating reactors has a 
great advantage in regulating the properties of products. 
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ABSTRACT 
In this work, a coupled computational fluid dynamics-population balance model (CFD-PBM) method is applied 
to study the influence of combination mode of impellers, hole diameter and number of gas distributors, and 
combination structure on the performance of a pilot-scale bioreactor. The study used fermentation broth as 
a continuous phase and bubbles as dispersed phases to investigate the effect of bubble size distribution on 
mass transfer. The method of equal mass transfer coefficients was applied to the scale-up design of the 
reactor.  
 

Keywords: Stirred bioreactor; Numerical simulation; Impeller combination; Distributor structure; Scale up 

 

1. INTRODUCTION 
The stirring tanks are widely used in chemical, metallurgy, food and biochemical fields (Demain and Adrio, 
2008). The stirred bioreactors have many advantages such as simplicity in operation and adaptability in 
diversified production. Although a variety of new bioreactors have been introduced, stirred bioreactors still 
dominate the fermentation industry (Kawase and Moo-Young, 1990). Therefore, the structural design and 
amplification effect of stirred bioreactors have always been the focus of fermentation engineering. In 
addition, the mass transfer process of the stirred bioreactors is influenced by geometrical parameters, 
including gas distributor structure, impeller number, blade structure, distance between the impeller and 
impeller, etc. The mass transfer coefficient has a crucial relationship with the scale-up of the bioreactor. 

In this work, a coupled computational fluid dynamics-population balance model (CFD-PBM) method is 
applied to study the influence of combination mode of impellers, hole diameter and number of gas 
distributors, and combination structure on the performance of a pilot-scale bioreactor. The study used 
fermentation broth as a continuous phase and bubbles as dispersed phases to investigate the effect of bubble 
size distribution on mass transfer. The results indicate that the gas distribution is greatly affected by the 
structure of gas distributor and the diameter of impellers. Through comparative analysis of five impeller and 
gas distributor combinations, the results show that the combination of Rushton turbine (Impeller four in a 
multi-impeller) and the four-hole ring distributor can improve the dispersion effect of gas hold-up and mixing 
performance of bioreactors, and reduce the energy consumption of the bioreactors to 7.53 W/L. Finally, a 
series of stirred bioreactors with volumes of 15 m3, 45 m3 and 75 m3 were designed based on the numerical 
simulation results of impeller combination and distributor optimization.  

 

2. MATERIALS AND METHODS 
2.1. Figures and Tables 

Table 1. Comparison of bioreactor scale-up parameters 

Bioreactor 225 L 15 m3 45 m3 75 m3 

Design volume :V 225 L 15 m³ 45 m³ 75 m³ 

Working volume VL 180 L 12 m³ 36 m³ 60 m³ 

Magnification factor 1 67 200 334 

H/T 2.92 2.92 2.92 2.92 

D/D1 0.31 0.31 0.31 0.31 

Ventilation intensity /VVm 0.74 0.42 0.40 0.38 

P/V(kW/m³) 7.53 3.98 2.63 1.58 

𝒌𝑳𝒂/𝒔−𝟏 0.00416 0.00416 0.00416 0.00416 

mailto:luozh@sjtu.edu.cn
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Figure 1. Scaling up methods and Five combinations of agitators in the reactor 

2.2. Equations 
2.2.1 Population balance model 

The coalescence rate c(vi, vj): 

c(vi, vj) = wijPc(di, dj)                                               (1) 

Prince and Blanche coalescence efficiency model formula (Prince and Blanch, 1990): 

Pc(di, dj) = exp (−
rij
5/6

ρl
1/2

ɛ1/3

4σ0.5
ln

h0

hf
), 𝑟𝑖𝑗 =

𝑑𝑖𝑑𝑗

𝑑𝑖+𝑑𝑗
                           (2) 

Luo and Svendsen's breakup model formula (Luo and Svendsen, 1996): 

b(V0, fvV0) = ∫ P(d0, fv
1/3
d0,

λmax
λmin

λ)ω(λ, d0)dλ                             (3) 

2.2.2 Mass transfer coefficient 
Commonly used correlation to describe the mass transfer coefficient in stirred bioreactor is the 𝑘𝐿𝑎 

relationship described: 

𝑘𝐿𝑎 = 𝑘 (
𝑃

𝑉
)
𝛼

𝜈𝑆
𝛽
(
𝜂

𝜂𝑤
)
𝛾

                                         (4) 

 
3. RESULTS AND DISCUSSION 
Stirring impeller and gas distributor are the main factors affecting the inhomogeneity characteristics of the 
flow field in the bioreactor. Figure 2 shows that the local gas hold-up and interfacial area of case 2 are higher 
than that of other cases, and the local Sauter average diameter of case 5 is the highest. Furthermore, the gas 
hold-up, Sauter average diameter and interfacial area of cases 1-4 in the middle and low regions of bioreactors 
show two peaks. One reason is that the reactor forms a cycle in this area, increasing the gas residence time. 
In addition, the impellers diameter of case 1-4 is relatively large, and the gas holding capacity is strong, which 
is also the reason for the high gas hold-up. In conclusion, the gas hold-up of combination 2 is obviously 
uniform than other combinations, indicating that optimizing the gas distributor and impeller can improve the 
gas dispersion performance of the bioreactor. 

 

Figure 2. Effect of different combinations on the axial local (a) gas hold-up (b) 
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4. CONCLUSIONS 
The results show that the combination of Rushton turbine (Impeller four in a multi-impeller) and the four-
hole ring distributor can improve the dispersion effect of gas hold-up and mixing performance of bioreactors, 
and reduce the energy consumption of the bioreactors to 7.53 W/L. Finally, a series of stirred bioreactors with 
volumes of 15 m3, 45 m3 and 75 m3 were designed based on the numerical simulation results of impeller 
combination and distributor optimization. 
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ABSTRACT  
The crystallization process is modeled using population balance models and further transformed into 
moment equations. The corresponding steady-state model is analyzed based on the sign of eigenvalues to 
find if motion is stable. Thus, if a steady state is chosen as an operating point, the motion caused should be 
stable to operate the process unit in the absence of a controller to keep control costs to a minimum. Then 
the dynamical system can be searched through parameter space for stable solutions using the characteristic 
polynomial. In this paper, we present two new results on the stability of a continuous crystallizer which is 
modeled using a population balance model. The first result is the application of the multi-equation 
bifurcation theory to find branching patterns of stationary states in free parameter space. The second result 
is about parameter uncertainty in the free parameter space of the moments model that is present as an 
interval. In the first case, Turning I and Single II branching patterns were obtained from numerical 
computations, which were not shown in previous work. Further an interval is considered as parameter 
uncertainty in inlet feed concentration. It was observed that for the secondary nucleation case, where 
oscillatory states are abundant in free parameter space, the crystallizer remains steady state stable despite 
the presence of uncertainty. A new result was used that starting with the Kharitonov stability criterion instead 
of vertex polynomials being Hurwitz stable, a new stability criterion has been applied. The numerical 
computations illustrate the findings.  

 
Keywords: Population balance model; branching behavior; Kharitonov stability criterion; continuous 
crystallizer; parameter uncertainty. 
 

1. INTRODUCTION 
Crystallization is an important unit operation in chemical engineering and population balance models are 
used to model the dynamical behavior of a continuous crystallizer. These models have been used to design 
crystallization processes and their control systems in industrial practice too. The crystal size distribution in 
the population balance model is used to derive zeroth-order to third-order moments and result in a moment 
equations model as a system of the ordinary differential equation system. This system now can be analyzed 
to devise stability measures, which is essential to select a nominal operating point for design and control. 
The issues that come up are the occurrence of the multiplicity of steady states and the stability of oscillatory 
states. Lakatos et. al. (2007) have presented results on the multiplicity of steady states and the application 
of the Mikhailov criterion to study the stability of oscillatory states. In this work, we present two new results, 
1. Application of multi-equation bifurcation theory to explore if branching patterns of stationary states form 
in free parameter space, and 2. Application of Bartlett et. al. (1988) to apply Kharitonov stability criterion 
without finding Hurwitz stability of all vertex polynomials. 

 

2. CONTINUOUS CRYSTALLIZER MODEL 
In this Section, we present the moment equations derived from the population balance model of a 
continuous crystallizer. We reproduce the moment equations from Lakatos et.al. (2007) for the sake of 
brevity. The dimensionless moment equations are   

 𝑑𝑥0
𝑑𝜉

= −𝑥0 + 𝜃𝜈, 𝜈 = 𝑝 , 𝑏 
 

(1a) 
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where subscripts p.b denote primary and secondary nucleation respectively, and 
 𝜃𝑝 = 𝑥0 +𝒟𝒶 ∗ 𝑦 ∗ 𝑥3

𝑗 (1b) 
 𝜃𝑏 = −𝑥0 + 𝒟𝒶 ∗ (1 − 𝑥3) ∗ Exp[−

𝜎

Log[
𝑦 + 𝜗
𝜗

]2
] (1c) 

 𝑑𝑥𝑚

𝑑𝜉
= −𝑥𝑚 + 𝑦

𝑔(𝑥𝑚−1 + 𝛽𝑥𝑚);    𝑚 = 1,2,3  
(2) 

 𝑑𝑦

𝑑𝜉
=
𝑦𝑖𝑛 − 𝑦

1 − 𝑥3
−
(𝛼 − 𝑦)𝑦𝑔(𝑥2 + 3𝛽𝑥3)

1 − 𝑥3
 

 

(3) 
 𝑑𝑦𝑠𝑣

𝑑𝜉
=
𝑦𝑠𝑣,𝑖𝑛 − 𝑦𝑠𝑣
1 − 𝑥3

+
𝑦𝑠𝑣𝑦

𝑔(𝑥2 + 3𝛽𝑥3)

1 − 𝑥3
 

 

(4) 
   

 The initial conditions for these moment equations are given as 
 𝑥𝑚(0) = 𝑥𝑚,0;   𝑚 = 0,1,2,3;  𝑦(0) = 𝑦0;  𝑦𝑠𝑣(0) = 𝑦𝑠𝑣,0 (5) 

In the above equations, Eqs. 1-5, 𝑥𝑚 is dimensionless mth moment, 𝑚 = 0,1,2,3. The details of this model are 
given in Lakatos et.al. (2007). 
 

3. RESULTS AND DISCUSSION 
 
Branching behavior of stationary steady states (Karimi and Inamdar, 2002). 
Consider a parameter set to find out if a singular parameter point exists for secondary nucleation to occur. 
We select 𝒟𝒶 = 90.0; 𝑦in = 1.2; 𝑦sv,in = 8.6; 𝛼 = 5. ; 𝛽 = 0.8; 𝜗 = 1.4. The constants are set as 𝑔 = 1; 𝑏 =
20.0; 𝑗 = 1.25; 𝑛 = 2. The parameter conditions solved for the occurrence of a Turning I branching pattern 
yield a solution, 𝑦𝑠 = 1.3726, 𝜎 = 3.7655. Further, the constants required to compute the perturbed 
branching solutions are obtained as, 𝑎01 = −0.5249, and 𝑎20 = 3.9351. Now we can compute the 

perturbed solution as, 𝑤1 = ±(0.3652√𝛥𝜇 ∗ 𝜒). The perturbed branch eigenvalue comes out as, 𝜆 =

±(0.2874), 𝛥𝜇 = 0.01. The sign of the perturbed branch eigenvalue clearly shows that the upper branch of 
the Turning I pattern is stable, and the lower branch is unstable.  
Another branching point that exists in free parameter space, showing the presence of stationary steady 
states, is Single II branching pattern for the case of secondary nucleation. The constants in the model are set 
as, 𝑔 = 1.5; 𝑏 = 2.0; 𝑗 = 1.7; 𝑛 = 2. The rest of the parameters are chosen as, = 190. ; 𝑦in = 1.4; 𝑦sv,in =

7.2; 𝛼 = 20.5; 𝜗 = 1.4. The Single II point occurs at, 𝑦𝑠 = 2.3961, 𝜎 = 2.5695, 𝛽 = 1.0663. We find that 

𝑤 = −1.1977𝛥𝜇1 3⁄ 𝜒. The perturbed eigenvalue is, 𝜆 = −2.5076, 𝛥𝜇 > 0. Therefore, as is required both 
the branches across singular point are steady state stable. 
 
Stability of oscillatory states in presence of parameter uncertainty (Bartlett et. al., 1988). 
Consider a parameter set for secondary nucleation, 𝒟𝒶 = 500. ; 𝑦sv,in = 8.8; 𝛼 = 25. ; 𝛽 = 0.1; 𝜗 = 1. ; 
𝑘ℯ = 0.8.  Let 𝑦in = 1.2 initially and shifts to a value 𝑦in = 1.5. The lower and upper limits of coefficients of 
characteristic polynomial are obtained from steady state equations. The six convex combinations (Bartlett 
et. al., 1988) give rise to polynomials whose real and imaginary solutions are mapped with 𝜆 ∈ [0,1] and 
plotted as real versus imaginary parts in a complex plane. Figure 1 shows a complex plane mapping when 
exponent b takes values 2.0, 10.0, 16.0 and initial value of input parameter 𝑦in = 1.2 is kept constant. The 
results of computations are plotted in Figure 1, and we see that some of the roots lie in right half plane 
implying those real parts of eigenvalues are positive. This confirms that the isothermal continuous crystallizer 
is steady state unstable in presence of parameter uncertainty. 
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Figure 1. A comparison between various b values is presented. (b=2 Blue, b=10, Orange, b=16, Green). The 
three solutions are unstable. 
 

4. CONCLUSIONS 
In this work, we have presented two new results on stability of crystallizer for the first time. The first result 
is about application of multi-equation bifurcation theory (Karimi and Inamdar, 2002) to study the branching 
behavior of steady states. The local stability of branches bifurcating from singularity was studied too. The 
second result is based on a result by Bartlett et.al. (1988), where for Kharitonov stability criterion a new 
method is applied instead of Hurwitz stability of vertex polynomials. This deals with parameter uncertainty 
appearing as an interval coefficient. Both the results are presented after numerical computations and 
illustrate the theory well. 
 

Notation 
 

𝑏 Exponent of secondary nucleation rate 
𝐷𝑎 Dimensionless parameter for nucleation 
𝑔 Exponent of crystal growth rate 
𝑗 Exponent of secondary nucleation rate 
𝑘𝑒 Parameter of primary nucleation rate 
𝑛 Population density function, 𝑚−4 
𝑦 Dimensionless concentration of solute 

Greek  
𝛼 Dimensionless parameter 
𝛽 Dimensionless parameter 
𝜗 Dimensionless equilibrium saturation concentration 

Subscripts  
𝑖𝑛 Inlet value 
𝑠𝑣 Steady state 

 

REFERENCES 
Karimi, I.A. and Inamdar, S.R., 2002. Branching and stability of stationary solutions in multi-equation 

systems. Chemical engineering science, 57(8), 1251-1267. https://doi.org/10.1016/S0009-
2509(02)00062-3. 

Bartlett, A.C., Hollot, C.V. and Lin H., 1988. Root locations of an entire polytope of polynomials: It suffices to 
check the edges, Math. Control Signals Systems, 1, 61-71. https://doi.org/10.1007/BF02551236. 

Lakatos, B.G., Sapundzhiev, T.J., Garside, J. 2007. Stability and dynamics of isothermal CMSMPR crystallizers, 
Chemical engineering science, 62, 4348-4364. https://doi.org/10.1016/j.ces.2007.04.028 



32 
 

Population balance equation for collisional breakage: A new numerical solution 

scheme and its convergence# 

 
Prakrati Kushwah1, Arijit Das1 , Jitraj Saha1 and Andreas Bück2 

1Department of Mathematics, National Institute of technology Tiruchirappalli, Tamil Nadu – 620 015, India 
2Institute of Particle Technology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen - 91058, 

Germany 
Corresponding author email: jitraj@nitt.edu  

ABSTRACT 

A new numerical method for the solution of population balance equation modeling nonlinear collisional 
breakage is presented. The new scheme is obtained by modifying the birth term of discretized equation. 
Allocation of new born particles to their neighboring cells plays a vital role towards the efficiency of proposed 
model. A detailed investigation on mathematical properties of the scheme, e.g., consistency and stability, is 
presented for different mesh types. It shown that the new scheme is moment-consistent and has first order 
convergence rate. A new finite volume scheme for collisional breakage is also presented to validate the 
efficiency of new scheme over several physics embedded test problems. 
 

Keywords: collisional breakage; sectional methods; consistency; Lipschitz stability; error analysis. 

 

1. INTRODUCTION 

Two types of breakage can be discriminated: “Linear” breakage in which a mother object with some property 
value 𝑣 splits into a collection of fragments with property values 𝑢, always smaller than 𝑣. The reason for the 
onset of breakage is not further specified or modeled. This type of breakage well describes the situation 
where stress is provided by an external entity or field, e.g., thermal stress. The other type is collisional 
breakage: Here, two mother objects with properties 𝑣 and 𝑤 collide. The probability of breakage of either 
object as well as the property distribution of the fragments depend on the properties of the specific collision 
partners. Both objects may break with different fragment distributions (as in the “linear” case); however, 
even property transfer may occur, i.e., one of the mother objects may even increase in volume by transfer 
and attachment of one of the fragments to a mother object. It is therefore a more general situation than the 
“linear” case with various applications in science and technology. The formal mathematical model reads as 
[ref. to Kushwah et al. (2023). Commun. Nonlinear Sci. Numer. Simul. 121:107244.] 

𝜕𝑛(𝜈, 𝑡)

𝜕𝑡
= ∫ ∫ 𝑏(𝜈|𝜁, 𝜂)𝒦(𝜁, 𝜂)𝑛(𝜁, 𝑡)𝑛(𝜂, 𝑡)𝑑𝜁𝑑𝜂

∞

𝜈

−∫ 𝒦(𝜈, 𝜁)𝑛(𝜈, 𝑡)𝑛(𝜁, 𝑡)𝑑𝜈𝜁

∞

0

∞

0

, 

with initial condition 𝑛(𝑥, 0) = 𝑛0(𝑥) ≥ 0. The breakage kernel 𝑏(𝜈|𝜁, 𝜂) denotes formation rate of 
fragments with volume 𝜈 from particles with volume 𝜁 due to its impact with a particle of volume 𝜂. Other 
components are defined in the usual manner. 

In this contribution, an alternative method for the solution of population balance equation of collisional 
breakage is presented. A detailed analysis of its mathematical properties is also provided. The numerical 
efficiency of the proposed model is validated over several physics-embedded test problems both qualitatively 
and quantitatively. Note that we need a reference scheme to validate the numerical efficiency of the new 
model. Therefore, a finite volume model is also introduced, and efficiency of both the schemes are discussed 
over the considered test problems. 

 
2. MATERIALS AND METHODS 
During collisional breakage, if a new daughter particle (fragment) is formed, there arise two possibilities for 
particle allocation in a cell according to its volume. Without taking into account the possibilities and handling 
them separately, inconsistencies in total volume will accumulate over time. The two events are: 
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1. (Less likely event) If the volume of daughter particle is equal to the volume of cell representative, then 

all properties associated to it are trivially preserved. 
2. (Most likely event) If the particle volume is not equal to the cell representative 𝝂𝒊 we assign that particle 

to the two neighboring cell representatives such that two pre-chosen dynamic properties are preserved 
exactly. The birth modification rule is as follows:  If a particle of volume 𝝂 is formed in volume range 
[𝝂𝒊, 𝝂𝒊+𝟏], then formation of this particle is represented by assigning a fraction 𝝁𝒊

+(𝝂)  at 𝝂𝒊 and fraction 
𝝁𝒊+𝟏
− (𝝂) at 𝝂𝒊+𝟏 to particle populations. Similarly, particle formation in volume range [𝝂𝒊−𝟏, 𝝂𝒊],  is 

reallocated in the pivots 𝝂𝒊−𝟏 and 𝝂𝒊 with the help of suitably defined volume fractions 𝝁𝒊−𝟏
+ (𝝂) and 

𝝁𝒊
−(𝝂). Thus, representative in the 𝒊 −th cell gets two contributions from its two neighboring pivots, 

namely 𝝂𝒊−𝟏 and 𝝂𝒊+𝟏. 
Figure 1 represents particle allocation in the intervals [𝝂𝒊, 𝝂𝒊+𝟏], and  [𝝂𝒊−𝟏, 𝝂𝒊] respectively. 
 
 
 
 
 

 
 

Figure 1. Pivot allocation when particle volume is not same as cell representative.  
2.2. Equations 
The new discrete equation reads like 

𝑑𝑁̂𝑖
𝑑𝑡

=∑∑𝜔𝑖𝑘
𝑗
𝒦(𝜈𝑘 , 𝜈𝑗)𝑁̂𝑘𝑁̂𝑗

𝐼

𝑘=𝑖

𝐼

𝑗=1

−∑𝒦(𝜈𝑖, 𝜈𝑗)𝑁̂𝑖𝑁̂𝑗

𝐼

𝑗=1

, 

 
where 

𝜔𝑖𝑘
𝑗
≔ ∫ 𝜇𝑖

+(𝜈)𝑏(𝜈|𝜈𝑘, 𝜈𝑗)𝑑𝜈 

𝜈𝑖+1

𝜈𝑖

+ ∫ 𝜇𝑖
−(𝜈)𝑏(𝜈|𝜈𝑘, 𝜈𝑗)𝑑𝜈 

𝜈𝑖

𝜈𝑖−1

. 

The first and second integrals in the above equations are zero for 𝑖 = 𝐼 and 𝑖 = 1, respectively. 
 
3. RESULTS AND DISCUSSION 
We have discussed 3 sample problems and validate the efficiency of the new model, along with error analysis 
in the paper. Here, we will showcase results for one problem which deals with multiple breakage and 
constant Collision kernel along with mono-disperse initial condition. Fig. 1 shows numerical number density 
simulated form the new scheme and Fig. 2 compares the particle density and moments with exact quantities 
and finite volume scheme (reference) results. An excellent agreement of all the vital properties can be 
observed which proves the robustness of the presented method.  

 
(a) 3D representation of number density                 (b) Number density at different times 

Figure 2. Number density with respect to particle size at different times 
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        (a) Number density in log scale                         (b) Zeroth and first order moments 

Figure 3. Comparison of number density and different order moments. 
 
 

 
4. CONCLUSIONS 
We introduce a new sectional method to approximate the solution of the nonlinear collisional population 
balance breakage equation. The underlying idea here is to modify the birth term by reallocating the particles 
in their neighboring pivots such that the total number and volume of the particles are captured with high 
accuracy.  A detailed stability and convergence analysis of the scheme is carried out using Lipschitz condition. 
Discretization error is calculated for four different meshes to investigate the order of consistency. The first 
order convergence is obtained from analysis for uniform, nonuniform and locally uniform meshes. However, 
scheme is inconsistent on random meshes. Several test problems are solved to validate the accuracy of the 
proposed scheme. For all the considered examples, the qualitative comparison of number density as well as 
zeroth and first order moments is performed. The relative error for both moments, relative sectional error 
and relative 𝐿1 −error are calculated for new scheme. Calculation for EOC shows first order of convergence. 
Overall, new scheme gives highly accurate results both qualitatively and quantitatively. 
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ABSTRACT 
We analyze the hyperbolic aggregation population balance model that guarantees mass conservation. New 
solutions for this model is obtained by employing Adomian decomposition method. A recursive scheme is 
derived to generate the solution as an infinite series. Mathematical convergence analysis of the new scheme 
is performed in detail. Further the accuracy and efficiency of the time dependent solutions are accelerated 
and stabilized for longer times by coupling the analytical method with Padé approximation technique. 
Reliability of the coupled approach is validated by considering several empirical test problems. For one test 
problem, we successfully present the new series-solution in closed form. Qualitative and quantitative 
comparison of significant physical entities like particle size distribution, total mass, number etc. are carried 
out against their exact values. Furthermore, we present a detailed error analysis of the original solution both 
with the Adomian and Padé approximant solutions at different times and parameters. 
 
Keywords: aggregation; Adomian decomposition method; Padé approximant; asymptotic stability; 
convergence. 
 
1. INTRODUCTION 
The aggregation PBEs are in general nonlinear equations whose mathematical treatment is very challenging. 
Solutions are mostly unavailable except for a few class of simple kinetic rates. Therefore, advanced 
computational techniques are much needed to solve the aggregation PBEs either analytically or numerically. 
The first aggregation model was proposed by M Smoluchowski in 1916. For a continuous system, the mass-
conserving, hyperbolic aggregation equation is an integro-partial differential equation [ref. to Bourgade & 
Filbet (2008)] as given below 

 

𝑥𝜕𝑛(𝑥, 𝑡)

𝜕𝑡
= −

𝜕

𝜕𝑥
[∫ ∫ 𝜈𝜁(𝜈, 𝜔)𝑛(𝜈, 𝑡)𝑛(𝜔, 𝑡)𝑑𝜈𝑑𝜔

∞

𝑥−𝜔

𝑥

0

], 

With initial data  
𝑛(𝑥, 0) = 𝑛0(𝑥) ≥ 0,   𝑓𝑜𝑟 𝑎𝑙𝑙  𝑥 ≥ 0. 

 

Here, 𝑛(𝑥, 𝑡) is the particle density of 𝑥 -size (≥ 0) particles at time 𝑡 ≥ 0, and 
𝜕

𝜕𝑡
 denotes the partial 

derivative with respect to time. The function 𝜁(𝑥, 𝑦) appearing on the right hand side is known as aggregation 
kernel. It gives the rate at which 𝑥 -size and 𝑦 -size particles merge to form a larger (𝑥 + 𝑦) -size particle. In 
general, it is assumed that aggregation kernel is nonnegative and symmetric in nature. Besides the particle 
number density 𝑛(𝑥, 𝑡), their moment functions also play a significant role in the population balance 
modeling. Few of them defines important particle properties. In this note the 𝑛 −th order general moments 
are defined as 

𝑚𝑖(𝑡) = ∫ 𝑥𝑖𝑛(𝑥, 𝑡)𝑑𝑥

∞

0

. 

The zeroth moment 𝑚0(𝑡) defines the total number of particles in the system, and the first moment 

𝑚1(𝑡) defines the total particle mass of the system. In case of mass-conservation we must have 
𝑑𝑚1(𝑡)

𝑑𝑡
= 0. 
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2. MATERIALS AND METHODS 
With the onset of high-speed computational techniques several semi-analytical methods are used 
considerably to solve nonlinear mathematical models when analytical solutions are either unavailable, or too 
complicated which are unlikely to be found. These techniques are especially helpful in disciplines like 
engineering and industry where complicated systems or events are described using mathematical models. 
The Adomian decomposition method (ADM) is one of the most efficient semi-analytical techniques for a wide 
range of nonlinear differential equations. It was first proposed by George Adomian in the 1990s as an 
alternative to traditional numerical and analytical methodologies. This approach is based on decomposition 
of a complex nonlinear problem into smaller linear sub-problems, which can be solved analytically. These 
solutions are then added together using a recursive scheme to approximate the solution of original nonlinear 
equation. By changing the number of terms in the series, it is possible to influence the precision of solution 
to a further extent. The fact that ADM does not require the use of meshes or grids, which are generally 
employed in other numerical methods based on sectional discretization is one of the great advantages of the 
method. As a result, problems involving complicated geometries or irregular boundaries benefit greatly from 
the ADM. The aforementioned factors have led to widespread application of this technique in numerous 
technical and scientific community. Note that for time dependent solutions, asymptotic stability of the 
solution is utmost important. To this end, the Padé approximant is rational function that gives the best 
approximation of a given function, whose values are available at specific points. These approximants are 
constructed by taking a ratio of two power series, one for the function being approximated and another for 
the function's reciprocal. Coefficients of the power series are chosen in such a way that the error is minimum 
between the function and Padé approximant. This approximation method is particularly useful in dealing 
with functions that have singularities, poles or branch cuts and stabilize the solutions for longer times. The 
analytical properties of such functions are preserved while being correctly approximated. Each analytical 
method has its strength and limitations. It is found that by coupling the Padé approximant with other 
analytical methods often results in more accurate solution. In this case, the approximated solution obtained 
by ADM is be redefined by coupling it with Padé approximant and thus advantages of both the methods can 
be enjoyed. The major success is observed on the stability of time dependent solutions at larger times. The 
coupled ADM-Padé solution shows stabilized asymptotic behavior as compared to the regular ADM solution.  
 To further understand the requirement of coupling these methods for analyzing solutions at larger 
times, a sample study is presented. In the Figure 1, exact particle density for sum aggregation kernel 
𝜻(𝝂,𝝎) = 𝝂 +𝝎 is compared against the 𝟓 −th order ADM solution and [𝟐, 𝟐] −order ADM-Padé 
approximant over an physics-embedded initial conditions. For Figure 1, an exponential initial distribution 
𝒏𝟎(𝒙) = 𝐞𝐱𝐩 (−𝒙). From Figure 1 it is noticed that both ADM and ADM- Padé approximant predict the 
density function with high accuracy at 𝒕 = 𝟏. However, when time increased to 𝒕 = 𝟑 and 𝒕 = 𝟓, it is noticed 
that ADM over-predicts the solution and generates huge margin for error. However, ADM- Padé approximat 
gives more accurate and stabilized solutions results at longer times also. 

 
  (a)     (b)    (c) 
Figure 1. Comparison of the particle density at different times; (a) 𝑡 = 1, (b) 𝑡 = 3, and (c) 𝑡 = 5 for sum 
aggregation kernel with exponential initial distributions. 
 
3. RESULTS AND DISCUSSION 
We validate the efficiency of the introduced ADM and ADM-Padé methods for solving the hyperbolic 
aggregation PBE. This is carried out by considering four test cases. These problems are classified into two 
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categories with respect to initial particle density distributions as: (i) exponential 𝑛0(𝑥) = exp (−𝑥), and (ii) 
Gaussian distribution 

𝑛0(𝑥) =
(𝜌 + 1)𝜌+1𝑥𝜌 exp(−(𝜌 + 1)𝑥)

Γ(𝜌 + 1)
, 

where 𝜌 = 1 are considered. For each type of initial data two different aggregation kernels are chosen in 
increasing difficulty level.  The results obtained from ADM-based scheme are compared with exact ones to 
showcase a great prediction of all the concerned physical quantities. Note that, fifth-order ADM-based 
solutions are considered throughout the manuscript. The series solutions can be further refined and 
improved by including higher number terms, however it will increase the computational complexity and thus 
affect the computational cost and efficiency. Series solutions are further improved by coupling with the Padé 
approximant of the ADM solutions, which gives a stable and efficient solution for a longer period of time.  
The quantitative analysis for particle density is carried out for both the methods and it is observed that 
coupled method gives improved results.  In the subsequent presentation, the methodology for calculating 
the errors will be presented. Here, we present results for the case where exponential initial condition along 
with constant aggregation kernel is considered. 

(a)                                              (b)                                                               (c) 
Figure 2. Comparison of the particle density at different times; (a) 𝑡 = 1, (b) 𝑡 = 3, and (c) 𝑡 = 5 

 
(a)                                              (b)                                                               (c) 
Figure 3. Comparison of (a) zeroth and first order moments (b) Second order moment (c) Average particle size 
 
From the figures, it can be observed that ADM with Padé gives promising results for number density and is 
in excellent agreement with exact as well as finite volume scheme (FVS) (Bourgade JP, 2008).  All order 
moments and average particle size is very well captured by ADM as compared to FVS.  
 
4. CONCLUSIONS 
The Adomian decomposition approach is implemented for the first time to approximately solve the 
hyperbolic aggregation population balance equation. A recurrence relation is developed to approximate the 
solution using the ADM approach. Convergence analysis is carried out based on contraction mapping 
principle. Several empirical test problems are taken into consideration with various kernel selections in order 
to validate the series solution. Both a qualitative and quantitative comparison of the exact and approximated 
quantities is performed. It is proved that the ADM accurately predicts all of the key characteristics with just 
a few terms in the series solution. From the description above, it can be inferred that ADM can serve as one 
of the most effective semi-analytical methods for the solution of hyperbolic aggregation model. Moreover, 
to improve the accuracy and to stabilize the asymptotic behavior of the solution, ADM is coupled with Padé 
approximation method. This technique produced highly accurate results with accelerated rate of 
convergence for longer times. 
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ABSTRACT 
A new bubble coalescence model was developed to simulate the bubble size distribution in gas-solid bubbling 
fluidized bed. The model takes into account the collisions that occur due to the differences in the rising 
velocities of the bubbles and the entrainment of the bubbles by the wake. The efficiency of coalescence for 
colliding bubbles is developed analogously to the liquid film drainage process in a gas-liquid system. 
Additionally, the model considers the physical phenomena and closes the coalescence model by performing 
sensitivity analysis on the unspecified parameters. The model is coupled with the population balance 
equations (PBEs) to predict the distribution of bubble sizes in the fluidized bed. The results of the model 
predict the trends of bubble size distribution reasonably well and show good agreement with the 
experimental data. 
 
Keywords: gas-solid bubbling fluidized bed; population balance model; bubble coalescence; size distribution; 
coalescence efficiency 
 

1. INTRODUCTION 
Recent years have seen numerous experimental measurements of bubble size distribution in bubbling 
fluidized beds using advanced techniques. Karimipour et al. provided correlations between bubble diameters 
and rise velocities. However, models predicting bubble size distribution in gas-solid fluidized beds, 
considering bubble coalescence and breakage, remain scarce. This paper aims to develop a bubble 
coalescence model based on physical motion phenomena. Informed by the well-established theoretical basis 
for bubble coalescence in gas-liquid systems, we adapt these principles to model bubble coalescence in gas-
solid bubbling fluidized beds, providing key contributions to the understanding of bubble coalescence in such 
systems. 
 

2. METHODS 
2.1. Collision frequency 
Hu and Liu believed that the coalescence is caused by two mechanisms: difference of bubble rising velocities 
and bubble wake effect. The rising velocities of bubbles with diameter of 𝑑𝑖  are calculated by the correlation 
of Davidson and Harrison: 

𝑢𝑖 = 0.711√𝑔𝑑𝑖 + 𝑈𝑔 − 𝑈𝑚𝑓  (1) 

Eq.(1) suggests that the rising velocities of bubbles become larger with the increase of bubble size. It can 
conclude that bubble collision will not occur when the size of leading bubbles is larger than that of following 
bubbles. The situation on a case-by-case basis is investigated in this work. The diameters of leading bubbles 
(𝑖) and following bubbles (j and k) satisfy the relationship of 𝑑𝑗 < 𝑑𝑖 < 𝑑𝑘, and the collision between leading 

bubbles and following bubbles are illustrated in Fig.1. 
First, the diameter of the collision tube is the sum of diameters of two colliding bubbles as the diameter 

of leading bubbles is smaller than that of the following bubbles (𝑑𝑖 < 𝑑𝑘). The dark-colored solid line 
cylindrical area in Fig.1 is the collision tube due to the difference of bubble rising velocity. the collision 
frequency due to different rising velocities can be given by computed by: 

𝜔𝑟(𝑑𝑖 , 𝑑𝑘) =
𝜋

4
(𝑑𝑖 + 𝑑𝑘)

2(𝑢𝑘−𝑢𝑖) =
𝜋

4
(𝑑𝑖 + 𝑑𝑘)

2(0.711√𝑔𝑑𝑘 − 0.711√𝑔𝑑𝑖) (2) 
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Second, for the case of that the diameter of leading bubbles is larger than that of the following bubbles 
( 𝑑𝑗 < 𝑑𝑖), many researchers believed that the coalescence of bubbles would occur due to the local low-

pressure area formed by the wake of leading bubbles, which caused an attractive effect on the following 
bubbles. As the speed of leading bubbles is larger than that of the following bubbles, the bubble collision can 
only result from the low-pressure area formed by the trailing wake. Therefore, some researchers pointed out 
that bubble coalescence could only take part in the condition where the following bubbles were in the wake 
region of leading bubbles. The light-colored dashed line cylindrical area in Fig.1 is the collision tube formed 
by the bubble wake effect. According to the Clift’s model, the wake angle 𝜃𝑤 can be expressed as 

𝜃𝑤 = 50 + 190exp (−0.62𝑅𝑒𝑖
0.4) (3) 

In discussing the above two collision mechanisms, three subscripts appear, and to further simplify the 
model, the collision frequency model for bubbles in a gas-solid fluidized bed can be written as 

𝜔(𝑑𝑖 , 𝑑𝑗) =

{
 

 
𝜋

4
(𝑑𝑖 + 𝑑𝑗)

2
(0.711√𝑔𝑑𝑗 − 0.711√𝑔𝑑𝑖)                    𝑑𝑖 < 𝑑𝑗

𝜋

4
(𝑑𝑖 + 𝑑𝑗)

2
𝑠𝑖𝑛2𝜃𝑤 [(𝑢𝑟𝑖

2 + 𝑢𝜃𝑖
2 )

1
2 − 0.711√𝑔𝑑𝑗]       𝑑𝑖 ≥ 𝑑𝑗

 (4) 

 
Figure 1. Collision tube schematic: two different collision mechanisms (left); Schematic diagram of bubble 
coalescence process in fluidized bed (right) 
 
2.2. Coalescence efficiency 
The most common model for coalescence efficiency in gas-liquid systems is based on the film drainage model. 
We believe that bubbles in gas-solid systems also have similar behavior to that in gas-liquid systems. As 
shown in Fig.1, the process of bubble coalescence in a gas-solid fluidized bed is demonstrated. Thus, the 
bubble coalescence mechanism is a three-step process: 

(1) Two bubbles collide, trapping a very thin layer of solid particles between them;(2) Bubbles keep in 
contact till the solid particle layer becomes thinner. The time that two bubbles keep in contact can be 
expressed using 𝑡𝑒;(3) Rupture of the solid particle layer when the thickness is smaller than the size of solid 
particles, and then two bubbles coalesce. The coalescence time required from the collision to the occurrence 
of coalescence is denoted as 𝑡𝑐. 

From the process described above, it can be seen that when 𝑡𝑒 is greater than 𝑡𝑐, the bubbles can 
coalesce. Thus, the probability density function of the normal distribution can be applied to calculate the 
coalescence efficiency using Coulaloglou’s research results. And the contact time 𝑡𝑒 is a random variable 
having negative exponential distribution with mean 𝑡𝑒̅, then the coalescence efficiency in a gas-solid fluidized 
bed can be expressed as] 

𝑃(𝑑𝑖 , 𝑑𝑗) = 𝑃(𝑡𝑒 ≥ 𝑡𝑐)=exp(−
𝑡𝑐

𝑡̅𝑒
) (5) 

The two characteristic times in Eq. (5) need to be determined. In Fig.1, when two bubbles collide, the 
thickness of the layer of solid particles trapped between the bubbles is 𝑠. Glicksman and Lord et al. believe 
that the coalescence time for two equal-size bubbles at a spacing 𝑠 can be given as 

1

𝑢𝑟𝑒𝑙𝑡𝑐
=

4

𝑑𝐵
2
[(
2𝑠
𝑑𝐵
− 1)

4

− 1]

 
(6) 

On the basis of this model, we use the equivalent diameters of the two bubbles to modify the Eq. (6). 
Therefore, the coalescence time for bubble sizes 𝑑𝑖  and 𝑑𝑗 can be expressed as 

𝑡c =

𝑑𝑒
2
[(
2𝑠
𝑑𝑒
− 1)

4

− 1]

4𝑢𝑟𝑒𝑙
 

(7) 
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where 𝑑𝑒 = 2𝑑𝑖𝑑𝑗 (𝑑𝑖 + 𝑑𝑗)⁄ ，𝑢𝑟𝑒𝑙 = {
     𝑢𝑗−𝑢𝑖          𝑑𝑖 < 𝑑𝑗   

𝑢𝑗 − 𝑢𝑤𝑖       𝑑𝑖 ≥ 𝑑𝑗
.Here we also discussed the contact 

time for two bubbles in two cases. 
Case 1: Mechanism of bubble rising velocity difference. The contact time 𝑡𝑒̅ due to the bubble rising velocity 
difference can be given as 

𝑡𝑒̅ =  𝑠/𝑢𝑟𝑒𝑙 , 𝑢𝑟𝑒𝑙 = 𝑢𝑗−𝑢𝑖 (8) 

Case 2: Mechanism of trailing wake. Based on the geometric relationship, the modified distance 𝑠∗ can be 
expressed as 

𝑠∗ = 𝑠+
𝑑𝑖

2
[1 − cos (180 −

𝜃𝑤

2
)]= 𝑠+

𝑑𝑖

2
[1 + cos (

𝜃𝑤

2
)] (9) 

So, the contact time 𝑡𝑒̅ due to the trailing wake can be given as 
𝑡𝑒̅ = 𝑠

∗/𝑢𝑟𝑒𝑙  ,𝑢𝑟𝑒𝑙 = 𝑢𝑗−𝑢𝑤𝑖  (10) 

  

3. RESULTS AND DISCUSSION 
To verify the bubble coalescence model developed in this paper, the population balance equation is solved 
based on the experimental data of Busciglio et al., In their experiments, the dimensions of the gas–solid 
fluidized bed equal to 800 (height) × 180 (width) × 15 (depth) mm.The results in Fig.2 show the bubble size 
distributions at the height of 0.5𝐻0, 0.75𝐻0 and 1.0𝐻0 in the fluidized bed for a gas velocity of 3.4𝑈𝑚𝑓. 

Meanwhile, the results in Fig.3 show the bubble size distributions at the height of 0.5𝐻0, 0.75𝐻0 and 1.0𝐻0 
in the fluidized bed for a gas velocity of 5.0𝑈𝑚𝑓. In summary, the model predictions are in fairly good 

agreement with the experimental results. The peaks of the bubble size distribution functions and their 
locations are reasonably well matched.  

 
Figure 2. Comparison of experimental and simulated bubble size distribution (𝑈𝑔 = 3.4𝑈𝑚𝑓) 

 
Figure 3. Comparison of experimental and simulated bubble size distribution (𝑈𝑔 = 5.0𝑈𝑚𝑓) 

 

4. CONCLUSIONS 
The main theme of this work is to accurately predict the bubble coalescence in gas-solid bubbling fluidized 
beds, and a new coalescence model based on the characteristics of the physical processes of bubble 
coalescence is developed. The approach of this work has two advantages. Firstly, two collision mechanisms 
are considered: (1) the bubble coalescence caused by the difference of bubble rising velocities, and (2) the 
coalescence due to the trailing wake. Secondly, the film drainage phenomenon of bubble coalescence in gas-
liquid systems adopted for developing the coalescence efficiency model in gas-solid fluidized beds. The 
evolution of bubble size distribution obtained by the model calculation is in general agreement with the 
experiment. This model provides a theoretical basis for solving the problem of understanding the evolution 
of bubble size in gas-solid fluidized beds. 
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ABSTRACT 
Well-designed crystallization processes can enhance the products’ quality; however, this remains a 

challenging engineering task. Model-based design (e.g., population balance models (PBMs) or computational 

fluid dynamics (CFD)) can foster the chemical industry’s general goal of improving production efficiency. 

Although these modeling approaches heavily rely on programming skills, a sufficient number of informative 

experiments are also required. In the past decades, crystallization has been applied generally, which results 

in large amounts of valuable data deriving from process development and production in lab and plant scale-

equally. In this work, we aim to demonstrate that historical-data-based modeling can be feasible, and with 

its help, production can be improved through offline model-based optimization. The model was used to 

determine an optimal design space for a temperature cycling operation. The optimal operation halved the 

current batch time at the plant scale. The optimized temperature profile was validated on a laboratory scale 

for two particle size specifications.   

 

Keywords: pharmaceutical crystallization; scale-up; population balance modeling; design space; robust 
optimization 

 

1. INTRODUCTION 
Crystallization is a widespread separation and purification technique in the chemical industries, which offers 
the advantage that the product particle properties can be tuned within a specific domain. This is exploited 
heavily in pharmaceutical crystallization, where the particle properties are often considered critical quality 
attributes (CQAs). Population balance models (PBMs) have been deployed in numerous fields of chemical 
engineering. An adequate model can mimic crystallization dynamics and be utilized for diverse engineering 
applications. A limitation of model-based technology transfer is that the local conditions (supersaturation, 
temperature, mixing, etc.) may strongly impact the microscopic and macroscopic behaviour. An elegant and 
precise solution for simulating processes on different scales is offered by combining PBMs with CFD. 
However, the computational burden of such full-scale simulations may be prohibitive despite the recent 
advances in information technology. If the system may be considered well-mixed and is only moderately 
sensitive to the local stirring conditions, utilizing semi-mechanistic mixing-dependent rate equations may 
lead to a reasonable solution (Evans et al., 1974). 

This work first presents the development of a crystallization model suitable to describe the laboratory and 
manufacturing scale operation simultaneously involving a limited number of laboratory experiments and 
historical data of manufacturing batches. Secondly, the design space (DS) (Elder & Teasdale, 2017) is 
determined using robust multiobjective optimization for laboratory and plant scale operation that satisfies 
the product particle size constraints with minimal batch time and heating/cooling energy demand.  

 

2. MATERIALS AND METHODS 
Compound A is crystallized in an unseeded, cooling crystallization process with temperature cycling (T-
cycling). The plant-scale data (16 manufacturing batches) came from the production site, and the initial 
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conditions (solute and solvent weight), the temperature profile, and the corresponding product particle size 
quantiles (PSQs) of each batch’s CSD were provided. Two dedicated and four historically available laboratory 
experiments, a seeded and five unseeded. Unlike the plant-scale experiments, the laboratory-scale 
experiments were monitored with FBRM (see Figure 1 for a high-level summary). The data from the two 
significantly different manufacturing scales were utilized simultaneously for the kinetic parameter 
identification. One may wonder whether developing separate models for the two scales would be better for 
the specific accuracies. The answer is that the available data may not permit us to do so, as complementary 
information comes from the two measurement groups, i.e., the CQA is the manufacturing-scale PSD. In 
contrast, the lab experiments were significantly more information-rich, given the existence of FBRM 
monitoring and intermediate PSD samples.  

 
Figure 1. Representation of the input experiments. The lab and plant-scale experiments and the different 

cases with the corresponding PSQs of the resulting crystals are illustrated. 

A monovariate number density function 𝑛(𝐿, 𝑡) is introduced to characterize the particle population. Perfect 
mixing, constant working volume, negligible breakage, and agglomeration are assumed. The population 
balance equations (PBEs) for supersaturated and undersaturated conditions take the form of Eq. (1) and Eq. 
(2). The corresponding initial and boundary conditions and units of the employed variables are listed in the 
supplementary information (SI:  Eq. (1)-(2)).  

𝜕𝑛(𝐿, 𝑡)

𝜕𝑡
+
𝜕[𝐺𝑛(𝐿, 𝑡)]

𝜕𝐿
= (𝐵𝑝 + 𝐵𝑠) 𝛿(𝐿 − 𝐿𝑛), if 𝜎 > 0 (1) 

𝜕𝑛(𝐿, 𝑡)

𝜕𝑡
−
𝜕[𝐷𝑛(𝐿, 𝑡)]

𝜕𝐿
= 0, if 𝜎 < 0 (2) 

The material balance equations (SI: Eq. (3)-(5)) kinetic equations of size-dependent growth, size-
dependent dissolution, and primary nucleation (SI: Eq. (7)-(10)) are in the supplementary information for the 
sake of conciseness. The secondary nucleation equation (Evans et al., 1974) is presented in Eq. (3) since this 
made it possible to handle the two scales simultaneously by incorporating the agitator properties.  

𝐵𝑠 = 𝑘𝑠 𝜎𝑠 (
𝑁𝑃𝑁

3𝑑5

𝑉
)µ3 (3) 

A semi-discrete High-Resolution Finite Volume Method implementation reduced the PBEs to ODEs. Then, the 
ODE was solved numerically with a high-order Runge-Kutta method in Matlab R2022b. The parameter 
identification is solved by minimizing a bi-objective goal function that, on the one hand, considers the 
deviations between the measured and simulated particle size quantiles and, on the other hand, the 
deviations between the measured and simulated nucleation observation times (SI: Eq. (11)-(16)). The 
optimization problem was solved in Matlab R2022a employing the (Covariance Matrix Adaptation Evolution 
Strategy) (Hansen, 2016) algorithm. 
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Figure 2. Validation performance (left to right): lab-scale, plant-scale non-first batch, plant-scale first batch. 

 

3. RESULTS AND DISCUSSION 
A visual representation of the model’s predictive power can be seen in Figure 2., where the fitted PSQ values 
of the validation experiments (and their standard deviation) are portrayed along the corresponding 
measurement values. The optimized kinetic parameters and the corresponding confidence intervals are 
summarized in Table 2. of the SI. The figures show that the simulated results agree with the validation data. 

With the fine-tuned model, robust multiobjective optimization of the temperature profile was executed 
by determining design space. The primary objective was reducing the batch time, whereas the secondary 
objective was reducing the thermal energy demand by minimizing the T-cycles' depth. The temperature 
turning points were considered normally distributed random variables, and Monte Carlo sampling selected 
random values, which generated many random temperature profiles around a nominal profile.  The design 
space was determined for cases with different numbers of T-cycles. All the random profiles must satisfy the 
product size constraints in the final solution. Figure 3. summarizes the results of the cases with four T-cycles. 
More details are provided in the supplementary information (SI: Eq. (17)-(20); Figure 1., Table 1.). 

  

             a)                                            b) 

Figure 3. Temperature profile DS and corresponding PSQs  for plant-scale (a) and lab-scale (b) are shown. 
Blue bands represent the resulting DS; gray bands indicate minimal and maximal PSQ requirements with 

measurement uncertainties; green and blue bands display simulated PSQs with their variance, and red lines 
depict lab-scale validation experiments' PSQs. 

As shown in Figure 2, the validation experiments (Fig. 3.b) back up the predictions made with the optimization 
algorithm, and these results suggest that the model-based optimization provides reliable information. The 
optimized temperature profile for the plant scale (Fig. 3.a) turned out to be two times faster than the 
currently applied in the production. 

 

4.  CONCLUSIONS 

This article presented the PBM-based optimal design space determination for an industrial crystallization 
process. The input measurements for model development were primarily historical data from previous 
manufacturing batches and process development works. Due to the features of the available data, namely, 
the CQA is the plant’s product size distribution. Still, as significant kinetic information comes from the lab 
experiments, the two equipment scales had to be handled by one kinetic model. Evans’ secondary nucleation 
equation was used to reach this goal, which accounts for the different mixing conditions. The kinetic 
parameter estimation resulted in a good-fitting model with narrow kinetic parameter confidence intervals. 
The validated model was used subsequently to determine an optimal design space for the temperature 
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profile that minimized the batch time and energy demand while respecting the technical and quality-related 
constraints. Lab-scale calculations were experimentally validated for two different particle size specifications. 
Plant-scale optimal design space suggests that the current operation could be halved in time. 
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ABSTRACT 
This study investigates the growth dynamics of Aspergillus niger pellets in submerged cultivation. We apply 
a two-dimensional population balance model to simulate pellet growth, dispersed mycelia formation, glucose 
consumption, and the influence of shear stress during cultivation. Our results show that increased shear 
stress and a larger dispersed volume lead to faster glucose consumption, which is consistent with 
experimental observations. This work improves the understanding of the cultivation processes of A. niger 
and their possible improvement. 
 
Keywords: bi-variate population balance model; Aspergillus niger; morphology development; pellet growth; 
shear stress  
 

1. INTRODUCTION 
The filamentous fungus Aspergillus niger is widely used as a multipurpose cell factory for the production and 
secretion of proteins, organic acids, and secondary metabolites. Cellular morphology and hyphal growth 
affect the choice of process conditions and final product titers. In submerged cultivation, mycelia can grow 
as dispersed mycelia or in compact pellets. Coagulative pellet formation that occurs in A. niger cultivations 
begins with spore agglomeration, followed by spore germination and pellet growth. In large dense pellets, 
substrate limitations occur in the pellet core due to hindered diffusion and substrate consumption by the 
outer hyphae. Variation in nutrient and oxygen supply and pellet fragmentation due to shear stress causes 
pellet heterogeneity at the bioreactor level [1].  

Various modeling approaches have been proposed to understand different aspects of fungal cultivations. 
Some focus on the initial stages of cultivation and the process of spore agglomeration. Others describe the 
growth of individual pellets using a stochastic structure model or continuum transport equations. Models for 
predicting biomass concentration, substrate uptake, and product formation of the entire fungal cultivation 
often idealize pellets as spherical, porous particles with constant radial density. Reaction kinetics are typically 
averaged over the entire pellet population [1].  

A novel experimental method using synchrotron radiation-based microcomputed tomography has been 
developed to investigate the 3D structures of a large number of fungal pellets and thus the distribution of 
hyphal density in the pellet populations [2]. These findings can be further coupled with work investigating 
the oxygen concentration in various pellets using the microelectrode technique. Thereby, the distribution of 
hyphal density can be related to the oxygen supply and the metabolism of fungal cells.   

In the present study, we aim to simulate the growth of a fungal pellet population with a two-dimensional 
population balance model. Our model includes pellet growth, dispersed mycelium formation, glucose 
consumption, and the effect of shear stress potentially causing abrasion. 
 

2. MATERIALS AND METHODS 
 

 
Figure 4: Fungal pellet description in the PBM  
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2.1. Pellet description and growth processes 
Pellets are characterized by the volume of a minimal sphere, which encloses all hyphal elements, 𝒗𝒑 in µm3, 

and additionally with the total volume of all hyphal elements in the pellet, 𝒗𝒉 in µm3 (Figure 1). The change 

of the pellet radius 𝒓𝑷(𝒗𝒑) due to biological growth processes, 
𝒅𝒓𝑮

𝒅𝒕
, is described by Michaelis-Menten 

kinetics, where 𝒄𝒈 in g∙L-1 is the glucose concentration in the cultivation medium and 𝑲𝑿,𝒈 is the Michaelis 

constant. For the increase of the total hyphal volume, the outer shell sufficiently supplied with oxygen is 
determined, described with the limit 𝒓𝒐𝟐𝒍𝒊𝒎 and an exponential growth is assumed for the local hyphal volume 

in the shell. A sigmoid function is used to describe the local hyphal volume 𝒄𝒉(𝒗𝒉, 𝒗𝒑, 𝒓) in a single pellet, 

based on observations from the 3D structure measurements. The reduction in pellet radius due to shear 

stress, 
𝒅𝒓𝑨

𝒅𝒕
, occurs for pellets larger than λ with the constant shear impact factor 𝜼𝑺𝑰𝑭 and the constant shear 

impact rate 𝜸̇𝑺𝑰𝑹. In low shear cultivation, it is assumed that no abrasion occurs and equation 2e is zero. 
Abraded hyphal volume increases the volume of dispersed mycelia, 𝒗𝒅 in µm3, which describes the entire 
dispersed mycelia volume in cultivation. Growth and glucose consumption take place for pellets and 
dispersed mycelia with the same growth rate 𝝁, yield coefficient 𝒀𝒙𝒈, and hyphal density 𝝔. The liquid volume 

of the cultivation medium is  𝑽𝒍𝒊𝒒. As liquid volume is considered to be constant all values all states describe 

absolute instead of volume density values (i.e. number of pellets instead of volumetric number density of 
pellets). The evolution of the number density distribution, 𝑛𝑝(𝑣ℎ , 𝑣𝑝) is shown in 2a. 

 
𝜕𝑛𝑝(𝑣ℎ,𝑣𝑝,𝑡)

𝜕𝑡
+

𝜕[𝐺ℎ(𝑣ℎ,𝑣𝑝)𝑛𝑝(𝑣ℎ,𝑣𝑝,𝑡)]

𝜕𝑣ℎ
+

𝜕[𝐺𝑝(𝑣𝑝)𝑛𝑝(𝑣ℎ,𝑣𝑝,𝑡)]

𝜕𝑣𝑝
−

𝜕[𝐴ℎ(𝑣ℎ,𝑣𝑝)𝑛𝑝(𝑣ℎ,𝑣𝑝,𝑡)]

𝜕𝑣ℎ
−

𝜕[𝐴𝑝(𝑣ℎ,𝑣𝑝)𝑛𝑝(𝑣ℎ,𝑣𝑝,𝑡)]

𝜕𝑣𝑝
= 0  

 

(2a) 

𝑑𝑟𝐺

𝑑𝑡
= 𝑘 ∙

𝑐𝑔

𝐾𝑋,𝑔+𝑐𝑔
  

 

(2b) 

𝐺𝑝 = √4 𝜋 (3𝑣𝑝)
23

 ∙  
𝑑𝑟𝐺

𝑑𝑡
  

 

(2c) 

𝐺ℎ = ∫ µ
𝑟𝑃(𝑣𝑡)

𝑟𝑜2𝑙𝑖𝑚
∙

𝑐𝑔

𝐾𝑋,𝑔+𝑐𝑔
∙ 𝑐ℎ(𝑣ℎ , 𝑣𝑝, 𝑟) ∙

4

𝜋
𝑟2𝑑𝑟  

 

(2d) 

𝑑𝑟𝐴

𝑑𝑡
= 𝜂𝑆𝐼𝐹 ∙ 𝛾̇𝑆𝐼𝑅  ∙ (𝑟𝑝(𝑣𝑝) − 𝜆)

𝑛 for 𝑟𝑝 ≥ 𝜆  

 

(2e) 

𝐴𝑝 = √4 𝜋 (3𝑣𝑝)
23

 ∙  
𝑑𝑟𝐴

𝑑𝑡
 

 

(2f) 

𝐴ℎ = ∫ 𝑐ℎ
𝑟𝑃(𝑝)

𝑟𝐴(𝑡)
(𝑣ℎ , 𝑣𝑝, 𝑟) 𝑑𝑟 

 

(2g) 

𝜕𝑣𝑑

𝜕𝑡
= ∫ ∫ 𝑣ℎ ∙

𝜕[𝐴ℎ(𝑣ℎ,𝑣𝑝)𝑛𝑝(𝑣ℎ,𝑣𝑝,𝑡)]

𝜕𝑣ℎ
𝑑𝑣ℎ𝑑𝑣𝑝  

∞

0

∞

0
+ µ ∙

𝑐𝑔

𝐾𝑋,𝑔+𝑐𝑔
∙ 𝜚 ∙ 𝑣𝑑   

 

(2h) 

𝜕𝑐𝑔

𝜕𝑡
= ∫ ∫ −𝑌𝑥𝑔

−1 ∙ 𝜚 ∙ 𝑣ℎ ∙
𝜕[𝐺h(𝑣ℎ,𝑣𝑝)∙𝑛𝑝(𝑣ℎ,𝑣𝑝,𝑡)]

𝜕𝑣ℎ
𝑑𝑣ℎ𝑑𝑣𝑝  ∙ 𝑉𝑙𝑖𝑞

−1∞

0

∞

0
− 𝑌𝑥𝑔

−1 ∙ µ ∙
𝑐𝑔

𝐾𝑋,𝑔+𝑐𝑔
∙ 𝜚 ∙ 𝑣𝑑 ∙ 𝑉𝑙𝑖𝑞

−1  (2i) 

 
2.2. Initial Conditions and Numerical Method 
A 2D normal distribution was chosen as the initial condition and the volume of the dispersed mycelia was 
zero at the beginning. For a numerical solution of Eq. (2a), a 1st order scheme with flux limiter is used [3]. 
 

3. RESULTS AND DISCUSSION 
Using the PBM described above, we simulated the cultivation of A. niger pellets in the absence and in the 
presence of abrasion. As shown in Figure 2B, the pellet volume increases without abrasion for up to 15 hours 
as the glucose is depleted. The hyphal volume also stops growing after 15 hours. In the presence of abrasion, 
the pellet volume increases, but due to abrasion, a left-skewed distribution is obtained in the first hours of 
cultivation (Figure 2C). Towards the end of cultivation, all pellets have a very similar pellet volume as a result 
of growth and abrasion (Figure 2C). Because most of the hyphae are in the center of the pellet and only a 
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small part of the hyphae is in the area affected by abrasion, the hyphal volume increases with time. Small 
dense pellets are formed. The size distribution of the pellets is significantly narrower than in cultivation with 
lower shear stress, in which the pellets are not abraded. This trend and the simulated glucose concentration 
development consumed faster in cultivation with abrasion could also be observed in yet unpublished 
experiments conducted by cooperation partners.  

 
 
Figure 5: Simulation results of A. niger pellets in submerged cultivation with and without abrasion. A: The 
glucose consumption profile. B & C:  The distribution of pellet volume and hyphal volume throughout the 
cultivation process. D: The 2D distribution of A. niger in the initial state. E & F: The 2D distribution of A. niger 
after 20 hours of cultivation. 

4. CONCLUSIONS 
In the current study, we employ a two-dimensional population balance model to describe the evolution of A. 
niger pellets in the submerged cultivation. The model incorporates growth and abrasion effects, reflecting 
the observed glucose consumption pattern. We plan to expand this model by incorporating additional factors 
such as breakage and aggregation, thus enabling a more holistic investigation into the influence of different 
cultivation conditions. 
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ABSTRACT 
In the present study, we propose a novel extended population balance equation (PBE) model for aggregation 

and sintering and couple it with computational fluid dynamics (CFD) to investigate synthesis of silica 

nanoparticles in a laminar and a turbulent diffusion flame. The extended PBE includes finite-rate sintering of 

primary particles by solving the PBE together with a transport equation for the number concentration of 

primary particles. The model is validated with the detailed experimental in-situ SAXS data of Camenzind et 

al. (2008) and is also compared with a monodisperse and a two-PBE approach. For the turbulent-flame case, 

the extended PBE model is incorporated into a large eddy simulation - probability density function (LES-PDF) 

modelling framework, accounting for the interactions between turbulence, chemistry and particle dynamics. 

By retaining the same kinetics in both cases without any adjustments in parameters, we focus on the 

modelling issues arising in silica flame synthesis. The coupled CFD-PBE simulation with the extended one-PBE 

model reduces substantially the computational time as compared with a two-PBE model which allows the 

investigation of 3D turbulent flows. Excellent agreement was found between numerical predictions and 

experimental data for temperature along the centreline for both flames. Reasonably good agreement was 

found between numerical predictions and SAXS data for primary particle diameters in the laminar-flame case. 

However, in the turbulent-flame case, the LES model underestimated the SAXS data for the primary particle 

diameter by a factor of two.  This was attributed to uncertainties in the nucleation model and the precursor 

decomposition kinetics. 

 

Keywords: population balance, CFD, sectional method, flame synthesis, turbulent flame 

 

1. INTRODUCTION 
Aerosol flame synthesis is one of the main methods for the industrial production of nanomaterials. The 
nanoparticles produced find a wide range of applications in gas sensors, energy storage materials, catalysts, 
among others. Several processes take place during the formation of nanoparticles in flames, including fuel 
combustion, precursor decomposition and oxidation, nucleation, condensation, aggregation and sintering. 
Product characteristics are highly affected by flow configuration, flame temperature, etc. Prediction of 
particle morphology in different flow regimes, such as laminar or turbulent, remains a challenge.  
     The main objective of the present study is to investigate numerically the synthesis of silica nanoparticles 
in a turbulent flame via a comprehensive CFD-PBE methodology that also accounts for the turbulence-
chemistry and turbulence-particle dynamics interaction. The extended PBE comprises a sectional method 
where the PBE is solved together with a transport equation for the number concentration of primary 
particles. Results are compared with the detailed experimental in-situ small-angle X-ray scattering (SAXS) 
measurements of Camenzind et al. (2008) for the "S-2" and "S-10" flames. 
 

2. METHODOLOGY 
2.1. A novel extended one-PBE model for aggregation and sintering  
The evolution of the particle size distribution of aggregates is described by the PBE which assumes the 
following form:  

𝜕𝑛

𝜕𝑡
+ 𝑢𝑗

𝜕𝑛

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
(𝐷𝑝

𝜕𝑛

𝜕𝑥𝑗
) + 𝐵𝛿(𝑣 − 𝑣𝑛𝑢𝑐) + 𝐶(𝑌, 𝑣) 

+ 
1

2
∫ 𝛽(𝑤, 𝑣 − 𝑤 )𝑛(𝑤)𝑛(𝑣 − 𝑤)𝑑𝑤
𝑣

0
− ∫ 𝛽(𝑣,𝑤)𝑛(𝑣)𝑛(𝑤)𝑑𝑤

∞

0
            (1) 
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where 𝑣 and 𝑤 express volume of aggregates, while 𝑛 =  𝑛(𝒙, 𝑡, 𝑣) is the particle number density 

concentration (denoting number of particles per unit of particle volume and mixture volume). 𝛽(𝑣,𝑤) is the 

aggregation kernel, 𝐵 and 𝐶 denote the nucleation and condensation rates, respectively. The transport 

equation for the number concentration of primary particles, 𝑁𝑝, takes the following form: 

 
𝜕𝑁𝑝

𝜕𝑡
+
𝜕(𝑢𝑗𝑁𝑝)

𝜕𝑥𝑗
−

𝜕

𝜕𝑥𝑗
(𝐷𝑝

𝜕𝑁𝑝

𝜕𝑥𝑗
) =  𝐽 −

3

𝜏𝑠
 ( 

𝑉

𝑣𝑝
 −  

𝑀23

𝑣𝑝
2/3)            (2) 

Where 𝐽 is the nucleation rate, 𝑣𝑝 is the average primary particle volume 𝑉  the particle volume fraction, 

M23 is the 2/3 fractional moment of the PSD, and τs is a sintering characteristic time. The major advantage 
of this model over the conventional one-PBE model is that it brings a finite-rate sintering model into the PBE. 
The main assumption adopted here is that the size distribution of primary particles is monodisperse, while 
the size distribution of aggregates is described by Eq. (1). 
 
2.2. Numerical method - Coupling of PBE with CFD  
A conservative finite-volume sectional method developed by Liu & Rigopoulos (2019) was employed for the 
numerical solution of the PBE. The advantage of the method is that it provides an accurate prediction of the 
particle size distribution and conserves the first moment (with respect to volume) during the aggregation 
process, an important feature for mass balance. 
     The PBE models have been implemented in our in-house CFD code BOFFIN, which is based on the variable-
density low Mach number formulation of the Navier-Stokes equations. The Navier-Stokes equations are 
discretised by applying the finite volume method. The pressure-velocity coupling is dealt with an iterative 
SIMPLE-type scheme. The transport equations for the reactive scalars and discretised PBE are solved with a 
fractional step method, where separate fractional steps were employed for convection-diffusion, chemical 
reaction and PBE integration. The PDF-stochastic field method was employed to describe the influence of the 
unresolved scales for the turbulent-flame LES simulations. 
 

3. RESULTS AND DISCUSSION 

 

Figure 1. Comparison of numerical predictions with experimental FTIR data for flame temperature along the 
centreline for the laminar flame (left) and the turbulent flame (right).  

A comparison of numerical results for temperature with the experimental FTIR data of Camenzind et al. (2008) 

for both the laminar and the turbulent case is shown in Fig. 1. In the present study, numerical results for flame 
temperature are in good agreement with the experimental data, largely due to the direct coupling of detailed 
chemistry with flow and the inclusion of the model for the thermal radiation from particles. 
     Numerical predictions for the primary particle diameters,  𝑑𝑝,𝑎𝑣, along the pathline of maximum silica 

volume fraction for both the laminar and the turbulent case are shown in Fig. 2. Results are compared with the 

in-situ experimental SAXS data of Camenzind et al. (2008). Reasonably good agreement is found between 

numerical predictions and SAXS data in the laminar-flame case (left). However, in the turbulent-flame case (right), 

the LES model underestimates the SAXS data for the primary particle diameter by a factor of two.   
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Figure 2. Comparison of experimental SAXS data with numerical predictions for primary particle diameters 
obtained with the extended one-PBE model for the laminar flame (left) and the turbulent flame (right). 
Results with a two-PBE and a monodisperse model are also presented in the left figure. 

 

Table 1. Computational performance of the CFD-PBE models for describing aerosol dynamics. 

Laminar Flow Mono Two-PBE Extended one-PBE 

CPU time (s) / timestep 0.187 1.145  0.32  

No. of equations 3 114 61 

      
The total CPU time per timestep for simulating all processes (including flow field and PBE solution) for the 
laminar-flame case for each of the three models examined is presented in Table 1. The simulation with the 
one-PBE model requires about a third of the CPU time spent on the two-PBE model, while it requires less 
than twice time needed by the monodisperse model. 
 

4. CONCLUSIONS 
The synthesis of silica nanoparticles in a laminar and a turbulent diffusion flame was studied via population 
balance modelling coupled with CFD. A novel extended one-PBE model that can predict the evolution of 
particle morphology while reducing substantially the computational cost as compared to other approaches 
has been proposed. Numerical predictions were compared with experimental data from the literature. 
Overall, the results showed that the coupling of CFD and detailed PBE can describe the evolution of particle 
properties during silica flame synthesis. Some discrepancies with the experimental data were present for the 
turbulent-flame case. By considering the extent to which the elements of the methodology have been 
validated in previous works, the discrepancy was attributed to uncertainties associated with the nucleation 
model and precursor decomposition kinetics. The results of this work have been published in the literature 
(Tsagkaridis et al. 2023, Tsagkaridis et al. 2023b). 
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ABSTRACT 
Granulation is an important process operation in industries such as chemicals, pharmaceuticals, and 

agricultural sectors. Computational tools are now recognized as an essential component of process and 

product design, analysis, and optimization. In this study, we present an integrated PBM-DEM model of a 

granulation process that incorporates aggregation, breakage, and liquid addition mechanisms. The 

population balance model (PBM) is three-dimensional and accounts for distributions with respect to solid 1, 

solid 2 and liquid, to represent a bi-component formulation consisting of an active pharmaceutical ingredient 

(API), excipient and liquid binder. Discrete element model (DEM) model is bi-directionally coupled with the 

PBM to utilize collision frequency-based kernels. These collision frequencies between particles are a function 

of dynamic particle size distributions and particle properties that contribute to preferential aggregation, 

breakage, liquid adsorption, or gas consolidation. The PBM-DEM model can simulate distributions and time 

evolutions of important granule attributes such as granule size, liquid content, and composition. Simulated 

trends are consistent with experimental trends observed in literature and in our previous work. DEM coupling 

increases the mechanistic nature of the PBM, as the use of collision frequency reduces the number of fitted 

constants required for model calibration. The combined model is also optimized for improved computational 

efficiency and can be simulated efficiently for its ultimate use in process design and analysis.  

 

Keywords: granulation; population balance model; discrete element method; aggregation; collision 
frequency 

 

1. INTRODUCTION 
Wet granulation is a common and complex industrial unit operation in various sectors such as specialty 
chemicals, pharmaceuticals, consumer goods and agriculture. It is now recognized by industry, regulatory 
authorities and academia that process models can be used in all stages of a product lifecycle for effective 
design, analysis, control, and optimization. Wet granulation often requires the development of multi-scale, 
multi-form and multi-dimensional process models and a popular technique is a coupled population balance 
model (PBM) and discrete element method (DEM) model. Several studies (Das et al 2022, Barrasso and 
Ramachandran 2014, Barrasso et al 2014, Nakamura et al 2022, Tamrakar et al 2018) have made substantial 
advances in the development and use of PBM-DEM models to describe key dynamics of wet granulation but 
there exist gaps that remains unaddressed, with regards to the incorporation of key rate processes, granule 
properties and computational efficiency of the model. Additionally, the models implemented in these studies 
are typically 1-dimensional or 2-dimensional, which contains certain limitations as it only accounts for a single 
component formulation. Therefore, the objective of this study is to develop a bi-directionally coupled 3-
dimensional PBM-DEM model that incorporates aggregation, breakage, liquid addition, and consolidation. 
The model will account for multiple granule attributes such as granule size, liquid content, fractional 
composition of solid 1 and porosity. The model will also be computationally efficient to ensure its effective 
use for process design and analysis.  
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2. MATERIALS AND METHODS 
2.1 Model Development (PBM-DEM Coupling) 
A 3-dimensional Population Balance Model (PBM) was used to track the particle size distribution, liquid 
content, and API composition over time during granulation. The general form of the PBE is shown in Equation 
1, where the internal coordinates consist of two solid (s1, ss) and a liquid (l) volume. Solid volumes, s1 and s2, 
signify two solid components in the granule, API and excipient volume, respectively. To track porosity of each 
discretized bin, gas volume was lumped into the present distributions. 

 

 
𝜕

𝜕t
𝐹(𝑠1, 𝑠2, 𝑙, t) +

𝛿

𝛿𝑙
[𝐹(𝑠1, 𝑠2, 𝑙, t)

𝑑𝑙

𝑑𝑡
] = 𝑅𝑎𝑔𝑔(𝑠1, 𝑠2, 𝑙, t) + 𝑅𝑏𝑟𝑒𝑎𝑘(𝑠1, 𝑠2, 𝑙, t)      (1) 

 
The rate processes included in this PBM are aggregation (𝑅𝑎𝑔𝑔), breakage (𝑅𝑏𝑟𝑒𝑎𝑘), liquid addition, and 

consolidation. The specific kernels used to describe these rate functions are as described in Barrasso et al., 
2014. While the aggregation and breakage rates are calculated from kernels that are functions of collision 
and impact frequencies, respectively, which are obtained from DEM, the liquid addition process is modelled 
entirely in DEM. DEM was incorporated in this work to capture particle scale interactions as a function of the 
subjected force fields (i.e. impeller rotations, gravity) and modelled using Newton’s second law of motion. 
The Hertz-Mindlin model was used to estimate the normal and tangential contact forces acting on each 
particle (Di Renzo and Di Maio 2005). The collision detection scheme employed (Das et al, 2022) distinguishes 
new and repeated collisions to ensure repeated collisions are not recounted. 

The coupled model is first initialized through the DEM simulation which incorporates geometric, material 
and process parameters of the system which consists of solids 1 and 2 and liquid particles. Then, DEM is run 
for several seconds to ensure a statistically accurate representation of collision frequencies and particle 
velocities. Next, liquid particles are introduced and its interactions include incorporation into the solid 
particles or merging with other liquid particles upon collision. At a defined coupling interval, the DEM 
provides an updated collision and impact frequency to the PBM, which simulates the net changes in size, 
composition, liquid content, and porosity. The updated distributions are then used to re-initialize the DEM 
simulation. This iterative simulation procedure repeats until the end of the process.  
2.2 Parameters and Initial conditions  
DEM simulations were modelled at a timestep of 1e-6 seconds, in a 0.06m diameter granulation, at a speed 
of 60 rpm. Solid particles were inserted and allowed to settle in the granulator before liquid particles were 
introduced to simulate the liquid addition process. The solid and liquid particles differ in properties as shown 
in Table 1. 

Table 1. Parameters and initial conditions used in DEM simulations. 
 
 
 
 
 
 
 
 

 
3. RESULTS AND DISCUSSION  
In this study, we demonstrate the need to couple a DEM with PBM under different conditions. PBMs have 
generally assumed that all particles have an equal probability of colliding with one another. This usually leads 
to either an over or under prediction of granule dynamics. For this work, we consider two cases which are a 
dilute phase system (e.g., fluid-bed granulation) and a dense phase system (e.g., high-shear granulation). 
Within each case, we vary initial configurations to account for different drug loadings (API: excipient ratio), 
liquid to solids ratio, and initial primary particle size differences between API and excipient. Results show key 
differences in collision frequencies and granule growth dynamics between the dilute and dense phase which 
a PBM on its own will be unable to discern. For a dilute phase system, we see that the collision frequencies 
are randomly distributed with propensity for particles of similar sizes to collide with each other more 
frequently. For a dense phase system, particles collide with other neighboring particles as influenced by their 

Parameters Solid Particles Liquid Particles 

Particle density [𝒌𝒈 𝒎−𝟑] 1668 1000 

Coefficient of restitution [-] 0.3 0.05 

Poisson ratio [-] 0.055 0.1 

Young’s modulus [Pa] 5E6 5E6 

Sliding friction coefficient [-] 0.3 0.1 

Rolling friction coefficient [-] 0.1 0.01 



56 
 

material properties, their tendency to segregate and relative motion. These differences in collision 
frequencies are illustrated in Figure 1. In both phases, we see that the variation in collision frequencies in 
different systems result in key differences in particle size distribution, liquid content, and API composition as 
a function of initial configurations, which a PBM will not be able to capture accurately. The overall model is 
also able to be simulated efficiently, where 1 second of DEM simulation requires approximately 81 minutes.  

Figure 1. Collision probabilities between particles of different sizes in a dense phase system and dilute phase 
system 
 

4. CONCLUSIONS 
A computationally efficient multi-scale model for various wet granulation cases and conditions is developed 
via a bi-directionally coupled PBM-DEM model. The multi-scale model was successful in simulating dynamics 
of key granule attributes and when compared with experimental trends, show superior sensitivity and 
accuracy compared to a more common PBM only model and/or existing PBM-DEM models. The multi-scale 
model framework accurately accounts for the effects of process parameters, material properties and design 
attributes that usually are important to account for during process and product design.  
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ABSTRACT 
Agglomeration is a unit operation in mechanical process engineering and thus relevant for almost all 
processes in particle technology. Targeted or selective agglomeration in multi-component suspensions finds 
wide applications. A current example is the microstructure in lithium-ion batteries, which is adjusted by 
hetero-agglomeration and significantly influences the resulting product properties. Only limited analytical 
tools exist to determine relevant properties, such as the material-specific agglomerate composition. This 
motivates the search for predictive computational methods that provide insight into the micro-processes 
taking place and thus access to process information that cannot be measured.  
Generally, population balance equations (PBE) are used for this purpose, which allow a calculation of 
macroscopic agglomeration processes. Essential is a reliable determination of the agglomeration and 
breakage rates, the so-called kernels. Especially in multi-component suspensions this is challenging and 
hardly described so far, since all interactions between all occurring components have to be considered and 
their description is further complicated by locally heterogeneous surface properties. Another challenge in 
modeling real systems is the availability of reliable and comprehensive material data. In the field of 
agglomeration, in particular pH-dependent surface potentials, Hamaker constants, but also fundamental 
correlations for the hydrophobic interaction are not available or are subject to errors. This totality of 
uncertainties complicates or prevents a purely predictive modeling. Often correction factors are used, which 
are optimized based on experimental data. In this contribution, an alternative approach is presented in which 
the mechanistic PBE model (whitebox) is extended with data-driven models from the machine learning (ML, 
blackbox) domain. The resulting hybrid model (HM) combines the advantages and mitigates the 
disadvantages of purely data-driven and physics-based approaches. 
A hybrid model of agglomeration processes can be realized in various ways: A variety of different ML 
algorithms can be used either to estimate the kernels for the PBE (serial HM) or to correct the PBE output 
(parallel HM). Since the optimal choice of HM architecture is highly problem dependent, a general and 
objective framework for model selection and arrangement is presented (Rhein et al., 2023). A repeated 
nested cross-validation with integrated hyperparameter optimization ensures a fair and meaningful 
comparison between different HM. This framework is finally applied to experimental data of magnetic 
seeded filtration and it is shown that the prediction error of the pure PBE model can be reduced by applying 
hybrid approaches. 

 
Keywords: hetero-agglomeration; population balance equations; machine learning; hybrid modeling; hyper-
parameter optimization; repeated nested cross-validation 

 
MATERIALS, METHODS AND RESULTS 
Details on this paper are published open access in Rhein et al. (2023) and will not be paraphrased here. In 
short, a full-factorial study of various HM-architectures in combination with various ML-algorithms were 
tested and compared objectively with the developed framework. The resulting hybrid models are visualized 
in Fig. 1 and Fig. 2 shows that both the serial and pure blackbox model improved prediction accuracy, i.e. 
lowered the root mean square error (RMSE) of the predictions. The parallel arrangement was not able to 
improve the predictions which emphasizes that the underlying equations (PBE) are correct, but necessary 
information (kernels) are missing. Nevertheless, using a serial HM instead of purely data-driven approaches 
makes the overall model more transparent, as the insights into the micro-processes calculated by the PBE 
are still available.  
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The published work elaborates on this and further investigates aspects of hyperparameter optimization and 
interpolation ability of the investigated model structures. 
 

 
 

Figure 1. Full-factorial study structure Figure 2. Comparison of prediction error – root mean 
squared error (RMSE) – of various model 
architectures  

 
CONCLUSIONS 
Hybrid modeling is a promising technique for describing hetero-agglomeration processes as it is an elegant 
way of introducing experimental data into mechanistic models, while simultaneously attenuating major 
limitations of purely data driven approaches. The presented general framework alleviates one major difficulty 
in applying hybrid models, namely that the optimal model architecture and ML algorithm cannot be known 
beforehand, as they are highly problem-dependent. By implementing a repeated nested cross validation with 
integrated hyper-parameter optimization, any HM combination can be compared for any given data set in a 
fair and objective manner to select the best-suited architecture. Additionally, the framework allows for a 
statistical evaluation of the selected hyper-parameters, which paves the way for further enhancement of 
model accuracy. The capabilities of this approach were portrayed by a case study on magnetic seeded 
filtration: 16 different model architectures – including the pure WBM as well as pure BBMs, serial and parallel 
HMs for different ML algorithms – were compared with respect to multiple criteria. Both the serial HM and 
pure BBM were able to achieve a significant increase in prediction accuracy compared to the pure WBM. 
They also proved to enhance interpolation ability between experimental data points, especially when more 
elaborate ML algorithms like the ANN are used. However, as serial HMs further allow for a more accurate 
depiction of the ongoing micro-processes, while pure BBMs do not provide any insight, it is concluded that 
serial HMs are best suited for describing hetero-agglomeration during MSF. 
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ABSTRACT 
The Reynolds Averaged Two Fluid Model and Population Balance equations were solved for an aerated stirred 

tank to obtain the bubble size distribution with different breakup kernels in non-coalescing conditions, thus 

making possible a clear assessment of different breakup mechanisms. The numerical results compared with 

experimental bubble size distributions, the power consumption and the gas-liquid flow regime showed a 

closer agreement with the experiments with the Luo and Svendsen kernel. 

 
Keywords: breakup kernels; aerated stirred tanks; digital imaging; non-coalescing systems; CFD 

 

1. INTRODUCTION 
The reliable description of fluid particle breakup due to turbulent flow is especially important in many gas-
liquid and liquid-liquid industrial applications. Several breakup mechanisms have been studied and modelled 
to describe the generation of smaller bubbles and droplets from a parent one, in the context of a population 
balance modelling (PBM) approach. From a PBM point of view the breakup of particles is often expressed as 
the contribution of a breakage frequency and a daughter distribution function, DDF.  

The choice of the most appropriate breakup mechanisms to model gas sparged turbulent stirred tanks is 
still debated, and some of those mechanisms involve the definition of a critical threshold on turbulent 
variables which lead to breakup once exceeded. The detailed description of those models can be found in 
recent reviews on the constitutive equations for fluid particle breakup, e.g. Solsvik et al. (2013).  

Generally, the effect of different bubble breakup kernels on the predicted bubble size distribution (BSD) 
in stirred tanks has been studied in presence of not negligible coalescence rate. For isolating the effect of just 
the breakup frequency on the predicted BSD, in the present work different breakup frequency models in the 
case of non-coalescing stirred tanks were compared. Besides the evaluation of the breakup models, non-
coalescing aerated stirred tanks are relevant in biotechnological applications, where the presence of 
antifoams and electrolytes may inhibit coalescence.  
 

2. MATERIALS AND METHODS 
2.1. The system 
A cylindrical, flat bottomed, fully baffled stirred tank 0.232m in diameter (T) equipped with a Rushton turbine 
with diameter D=T/3 positioned at an off-bottom clearance of T/2 was studied. Air was injected through a 
ring sparger of diameter T/5 positioned below the impeller in a liquid solution of water and NaCl with 
concentration equal to 0.21 mol/L, which was found sufficient to inhibit bubble coalescence.  

The power consumption was measured with a strain gauge torque sensor; the flow regime was assessed 
by visual observation and the BSD were measured with digital cameras. To measure the BSD, images were 
collected close to the wall of the tank in the space between two consecutive baffles on a circular window 
0.05m in diameter and at an axial elevation of 0.241m from the tank bottom. Further information on the 
geometry and experimental techniques may be found in a previous work (Maluta et al.,2023). 
2.2. Computational Model 
The steady state, isothermal, incompressible Reynolds Averaged Navier Stokes (RANS) equations, extended 
to two phases with the so-called Two-Fluid model (TFM) were numerically solved with Ansys Fluent 2020R2 
in a domain matching the experimental system. The well-known mixture formulation of the two-equation k-
ε turbulence model was adopted to model the Reynolds stress tensor. The formulation of the momentum 
conservation equations included the interphase drag and turbulent dispersion forces. 

The bubble size needed to close the set of equations was obtained from the solution of a PBE. Since 
coalescence is inhibited, just the birth and death due to breakup phenomena were considered as sources in 
the bubble number density function (NDF) transport equation. Different breakup kernels were considered, 
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corresponding to three different breakup mechanisms. Hereafter just the breakup frequencies are reported, 
the DDFs were taken from the corresponding publications and are not reported here for brevity. 

The breakup frequency, 𝑔(𝑑), in the kernel developed by Laakkonen et al. (2006) reads as: 
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With Ci being empirical constants shown to be grid dependent, and the other variables follow the usual 
notation. This breakup mechanism assumes that binary breakup of a bubble occurs when the turbulent 
velocity fluctuations across the particle surface are larger than a critical value.  

The breakup frequency in the kernel developed by Lehr et al. (2002) reads as: 
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Where no empirical constants are defined, and breakup is encountered when the inertial stress of the 
eddy bombarding the parent bubble is larger than the interfacial force of the smallest daughter particle. 

The breakup frequency in the kernel developed by Luo and Svendsen (1996) reads as: 
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 (3) 
With 𝜁 being the ratio between the eddy colliding with the parent bubble and the parent bubble size 𝑑.  

The breakup is assumed once the turbulent kinetic energy of the bombarding eddies exceeds a critical value.  
The PBEs coupled with the different breakup mechanisms were solved with the Quadrature Method Of 

Moments (QMOM) and 6 moments of the NDF were transported. Although unable to obtain the full BSD, 
QMOM is particularly advantageous for CFD simulations, since the bubble diameter in the interphase 
momentum exchange terms can be readily obtained from the ratio of the third to the second NDF moment 
(Marchisio & Fox, 2013). 

 

3. RESULTS AND DISCUSSION 
The bubble size distributions experimentally measured and numerically calculated at a stirring speed of N = 
560rpm and a gas flow rate of Qg = 4L/min are shown in Figure 1a, both in terms of abscissas and weights 
obtained from the moments of the NDF, bars, and as reconstructed NDFs, dashed lines. 

Figure 1a shows that the kernel developed by Luo and Svendsen (1996) better reproduces the 
experimental distribution. In fact, for this model both the calculated abscissas and the relative weights are 
relatively close to the experimental ones. On the other hand, the breakup kernel by Lehr et al. (2002) fails in 
reproducing the measured BSD, while the one by Laakkonen et al. (2006) noticeably overpredicts the number 
of larger bubbles of the BSD. In order to quantify the agreement between the experimental and predicted  
BSDs, the deviation of the numerically predicted NDF i-th moments from the experimental ones are analyzed 
in Figure 1b. The deviations are calculated as: 
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Figure 1b shows that the deviation of the numerical moments obtained with the kernel by Luo from the 

experimental ones are between 3% and 31%, while the deviations for the other two kernels generally 
increase with the moment order, reaching deviations larger than 100 times the experimental moments.  

The different predictions of the BSD by the three breakup kernels reflect on the bubble Sauter mean 
diameter in the impeller zone, affecting the impeller power consumption, Figure 1c, and predictions of the 
flow regime, Figure 2. In particular, the power consumption obtained both as the total torque on the tank 
fixed walls and the mass integral of ε show that the model by Luo and Svendsen predicts the closest 
agreement with the experimental data. Concerning the flow regimes, the adoption of the Lehr breakup model 
results in a loading regime, the model by Luo and Svendsen predicts a complete recirculation regime, and the 
model by Laakkonen predicts a loading regime, in which few gas is entrained in the lower recirculation loops 
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close to the walls. The observed regime is complete recirculation, therefore the Luo and Svendsen model 
better replicates the experimental observations. 

     
  a b c 
Figure 1. Numerical and Experimental BSD (a); moment deviations (b); impeller power consumption (c). 

     
a b c 

Figure 2. Gas volume fraction distributions: Laakkonen et al. (a), Luo and Svendsen (b) and Lehr et al. (c) 
 

4. CONCLUSIONS 
In the operative condition considered, the predictions of the breakup kernel by Lehr et al. cannot reproduce 
the flow features of the aerated tank experimentally observed. The kernel by Laakkonen et al. improves the 
predictions of the Lehr et al. kernel, but overpredicts the number of larger bubbles in the tank, resulting in a 
loading flow regime, which was not observed in the experiments. The kernel by Luo and Svendsen predict a 
BSD close to the measured one and correctly predicts the power consumption and the flow regime 
experimentally observed in the system. Additional operative conditions are under study to confirm these 
results. 
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ABSTRACT 
The knowledge of droplet size in liquid flows or emulsions is a fundamental parameter that strongly 

influences product quality, stability, and processes performance. In this communication, a new image 

processing algorithm for droplet detection in an emulsion based on machine learning is introduced. It is based 

on the combination of two neural networks and a 3D images modeling software. Validation on synthetic 

images as well as on experimental acquisition prove that it overpasses current image processing usually used 

in emulsion characterization. 

 

Keywords: image processing, machine learning, droplet size measurement, droplet detection, convolutional 
neural networks 

 

1. INTRODUCTION 
Emulsions play a significant role in various industrial processes in many sectors such as food, 
pharmaceuticals, cosmetics and energy. Traditionally, droplet size measurement in emulsions has relied on 
conventional image processing algorithms like the Hough circular transform (HCT) introduced by (Davies, 
1988). While these approaches are effective, they are only applicable to the characterization of dilute 
dispersed phase flows, and in the case of high droplet overlap in the images, they lead to frequent false 
detections.  

In emulsion characterization, as in all image-processing problems, deep learning is replacing traditional 
image processing. This is especially true for convolutional neural networks (CNN), which are remarkably 
efficient at object recognition. To train such networks for object detection, it is crucial to create a huge 
database of labeled objects (droplets, bubbles...). Several approaches have been explored in the literature 
based on deterministic algorithms or even manual annotation (Patil et al., 2022) but significant challenges 
persist in creating labeled droplet databases suitable for a machine learning approach. Manual annotation is 
frequently an impractical option and traditional methods like HCT fall short in creating accurate databases 
due to the potential inclusion of incorrect labels.  

This communication presents a new approach in which a deep learning algorithm is trained using synthetic 
images generated by a 3D graphics software and textured using a generative adversarial neural network, to 
tackle issues related to dataset creation. After describing the algorithm, some results on synthetics and real 
images are introduced and discussed. 

 

2. PROPOSED ALGORITHM 
The main flowchart of the proposed algorithm is summarized in Figure 1Figure . It is a three steps process:  
 

1. Creation of a huge image dataset of well-known (size, position …) droplets using a 3D computer 
graphics software tool.  

2. Texturing this base from real flow images using the CycleGAN neural network.  
3. Training the YOLO (You Only Look Once (Redmon et al., 2016)) neural network object’s detector on 

the textured image dataset. 
 
The neural network used in this study is the object detector network YOLO in its V5 release. For an input 
image, it predicts rectangular bounding boxes frames around the detected objects. Hence, in the case of 
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spherical droplets, it provides information on their diameter. A detection probability is associated to each 
object, which allows tuning the detection performance. Usually, to train such a network, it is required to 
generate a training base of several thousands of labeled images containing both sharp and blurred droplets, 
which can be an issue. To this end, synthetic images were generated from Blender (a modeling software with 
3D rendering). The use of synthetic images enables complete control of the drop size distribution (DSD), so 
ensuring an efficient labeling. In a second step, and in order to reinforce the learning process, a texture 
transfer with non-paired data from real images to synthetic images was performed using CycleGAN (Zhu et 
al., 2017) 

 
Figure 1. Main flowchart of the proposed algorithm 

 
3. RESULTS AND DISCUSSION 
3.1. Numerical Validation on a dataset of synthetic images 
First, in order to evaluate the performance of the network, a test dataset of 1 000 synthetic textured images 
was generated. For comparison purpose, detections were made by both the neural network and the circular 
Hough transform, considering a confidence threshold of 0.95. Detection quality was assessed using two 
metrics: precision and recall. Precision is the number of right droplets detected divided by the total number 
of droplets detected. Recall is the number of right droplets detected divided by total number of right droplets. 
According to Figure 2 and Table 1, the network largely beats the circular Hough transform, both on precision 
and recall. The investigation also considered the influence of other parameters, such as the texture of 
synthetic images or the number of images in the training base. 

 

Figure 2. Left: Ground truth. Middle: Detection with CHT. Right: Detections with neural network 

Table 1. Performances of CHT and neural network on 1000 test synthetic textured images 

 Precision Recall 

Hough 0.536 0.240 

Neural network (confidence = 95%) 1 0.758 
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3.2. Experimental validation on real emulsions 
In a second step, by comparison with laser granulometry measurements, the performance of the algorithm 
was evaluated on real images. The fluid system used was 25 grams of silicone oil (viscosity of 200 mP.s−1) 
dispersed in 975 grams of ultrapure water (viscosity of 1 mP.s−1). The achieved hold-up in the tank was of 
2.5%. Additionally, 3 grams of Polysorbate (Tween® 20, SigmaAldrich, Germany) were added to stabilize the 
emulsion and prevent coalescence phenomena during transport to the laser granulometer. The stirring speed 
was adjusted to 600 rpm and images were acquired thanks to an endoscopic probe (SOPAT GmbH) as shown 
on the left upper part of Figure 1. Eleven acquisitions of 200 images each were made, with each acquisition 
occurring every 400 seconds at a frame rate of three images per second. Analysis with the laser granulometer 
(Mastersizer 3000 from Malvern) were done on four samples, taken at four relevant times (400, 1200, 2000 
and 4000 s) from the beginning of the agitation (t=0).  

Figure 3 compares the DSD in volume measured with both technics. For the four times considered, the 
droplet size distributions are consistent, except for the smaller sizes where the number of small droplets 
obtained by the Mastersizer is higher than by image treatment. This can be due to the fact that the 
Mastersizer tends to overestimate the fraction of small droplets, while the machine learning approach is 
limited by the resolution of the images taken by the endoscopic probe, making the smallest objects 
undetectable.  

 

Figure 3. Left: DSD found with image processing. Right: DSD found with laser diffraction granulometer  

4. CONCLUSION 
In this communication, we have introduced a new image processing machine-learning algorithm for droplets 
detection in liquid-liquid systems. It is based on the combination of three numerical tools: the object detector 
YOLOv5, synthetic images generated by Blender and a neural network specialized in transfer texture, 
CycleGAN. This method overpasses the usual image processing technics, both in term of precision and recall. 
Moreover, it is consistent with other current DSD measurement technics like laser granulometry. The next 
step will be to determine the contribution of this detection method to the solution of the population balance 
equations using inverse methods. 
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