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ABSTRACT 
Emulsions are used in diverse industries such as food, cosmetics, and pharmaceuticals. The 

population balance equation is a suitable framework largely used for the modeling of emulsion preparation. 
Within this framework, phenomena such as droplet breakage and coalescence are modeled by 
phenomenological kernels. However, discrepancies in the governing parameters often arise due to scale or 
application differences. This research aims to determine the conditions of proper parameter identifiability as 
well as kernels selection, leading to a broadly applicable model.  

 

Keywords: parameter identifiability, uncertainty, sensitivity, Markov Chain Monte Carlo simulation. 
 

1. Introduction 
1.1. Modeling approach 
Emulsions are prepared using open-cell solid foams (OCSF) inserted inside a pipe, a method we have 

previously demonstrated to be both efficient and energy-competitive in continuous mode (Lebaz et al., 
2024). This setup ensures a uniform energy dissipation, enabling us to apply the Population Balance Modeling 
(PBM) approach to model the dynamic evolution of the droplet size distribution without a need for CFD 
coupling. 
Given the low dispersed phase fraction (1 %) in our study, we focused on the breakage mechanism, which 

can be modelled by two key functions: breakage probability S and daughter size distribution 𝛽 (Equation 1). 
Numerous models exist for these functions, reflecting their complexity. We first compare two widely-used 
breakage kernels: Coulaloglou and Tavlarides (Equation 2) and Alopaeus et al. For the daughter size 
distribution, we used the Lee et al. model, assuming a uniform beta distribution with parameters a=b=2 
(Equation 3). Breakage probability models include parameters 𝐵1, 𝐵2 and 𝐵3, with research showing 
significant variability in their values across different studies and scales. 
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1.2. Identifiability analysis  
This analysis aims to identify the operating conditions under which the parameters can be determined and 

to assess the robustness of these identifications to the experimental error (Loosdrecht et al, 2016). It involves 
three stages: first, parameter estimation is done using statistical and optimization algorithms within either 
the Frequentist (based on likely outcomes) or Bayesian (based on prior probability distributions) frameworks. 
Next, uncertainty is assessed using techniques like Markov Chain Monte Carlo (MCMC) to quantify impact of 
the estimates on model outputs. High parameter correlations can cause compensation effects, complicating 
unique estimations. Thus, the third step—sensitivity and identifiability analysis—identifies a subset of reliably 
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estimable parameters. This process is refined iteratively until the parameter set meets criteria such as a delta 

mean-square measure msqr below 0.1 and a collinearity index between 10 and 15. 
 

2. Results and discussion 
Both of the optimization methods (Frequentist and Bayesian) converge to the same parameter values 

indicating that the measurements are distributed with a white Gaussian noise. The standard deviation and 
relative error of estimates were under 10 %, indicating good estimation.  

However, the high correlation of 𝐵1 with 𝐵2 and 𝐵3 (Table 1) suggests the need for identifiability analysis. 
This can also be addressed by increasing the information content (range of operating conditions), selecting a 
subset of parameters that is identifiable with the available data, or switching models.  

Figure 1 illustrates the msqr ranking of the three parameters under different conditions. It is observed that 
at low dispersed viscosities, the significance of the term 𝐵3 diminishes, suggesting that under such conditions 
it can be omitted from the probability function. It Is however important to note that in the probability kernel, 

the 𝐵2 term is divided by 𝜀2/3 while the 𝐵3 term is divided by 𝜀1/3. This means that at lower energy dissipation 
(e.g. in a stirred tank) the 𝐵3 term should be kept in the kernel even for lower dispersed phase viscosities.  

 

Table 1. Parameter estimation results obtained with Coulaloglou and Tavlarides model. 

 Estimate 
[B1, B2, B3] 

Standard Deviation 
Correlation Matrix 

 B1 B2 B3 

Bayesian [0.0186, 0.4428, 0.3464] [1E-4, 2.7E-3, 1.8E-3] 

B1 1   

B2 0.5462 1  

B3 0.7435 0.0594 1 

 

Figure 1. Significance ranking of the 𝛿𝑚𝑠𝑞𝑟 for the three parameters across three different experiments. 

3. Conclusion 
In this research, parameter identifiability and uncertainty analysis were applied to PBM for two breakage 

kernels. The methodology helps determine the identifiable set of parameters in a specific range of operating 
conditions. This is useful for its implementation in various applications and scales. 
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ABSTRACT 
Pickering emulsions, stabilized by solid particles at the oil-water interface, have gained attention due to their 
advantages over traditional surfactant-stabilized emulsions. The high desorption energy of solid particles 
results in nearly irreversible interfacial adsorption, enhancing stability. Additionally, biocompatible materials 
can be used as surfactants or tailored for specific functions (Sun et al., 2022). Crystalline particles, especially 
polyphenol crystals, are promising for stabilizing interfaces and providing functional properties like controlled 
release, making them suitable for pharmaceuticals, food, and cosmetics (Zembyla et al., 2018). A model was 
developed, capable of describing a water-in-oil Pickering emulsion system stabilized by curcumin crystals. 
The water droplets contain an active ingredient that is released into the oil when the crystals dissolve, as the 
exchange surface between the two phases increases. To correctly account for the presence of a crystal 
population, described by an assumed log-normal distribution, a Population Balance model (PBM) was used. 
The terms for birth and death were not considered; instead, the variations over time are solely due to a 
negative growth rate representing the dissolution rate of the curcumin crystals: 
 

𝜕𝑛(𝐿)

𝜕𝑡
+ 

𝜕

𝜕𝐿
(𝐺(𝐿)𝑛(𝐿)) = 0 

The chosen method for solving the PBEs is the quadrature method of moments (QMOM), with nodes 
calculated using the Wheeler algorithm.  
 

𝜕𝑚𝑘

𝜕𝑡
+ 𝑘𝐺𝑚𝑘−1 

 
The negative growth term, representing the dissolution rate of the crystals, was determined as shown below: 
  

{
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𝑑𝐿

𝑑𝑡
=  𝑀

𝑘𝑚𝑘𝑎

𝑘𝑣3
(𝐶𝑠𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑡𝑦 − 𝐶𝑏𝑢𝑙𝑘) 

 
Where km is the mass-transfer coefficient, ka and kv are respectively the area and volume shape coefficient 
and ρ is the curcumin density. The driving force—the concentration difference—changes over time as the 
concentration of curcumin in the oil, Cbulk increases, thereby decreasing the dissolution rate. The results 
obtained from simulations, using initial data extrapolated from previous work conducted in the group (Del 
Duca et al., 2024), such as the mean diameter of water droplets and curcumin crystals, indicate that the 
model predicts plausible behaviour for the concentration of the active ingredient encapsulated in the 
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dispersed phase, in both the oil and water phases over time, as well as for the concentration of curcumin in 
the oil (Fig. 1). 

 
 

 
 
 

 
 
 

CONCLUSIONS 
The next steps to be taken are the implementation of data from laboratory experiments into the model 
itself, this information have to be be integrated in the initial data of the model, such as the covering 
fraction values, a parameter able to tell how much of the droplets’ interface is covered by the crystals. Also, 
a possible next important element to integrate into the model could be an experimental discrete 
population size distribution.  
The model could also be implemented with the use of the extended method of moments to accurately 
account for the presence of the death terms. 
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Fig 1 Predicted concentration of Active Ingredient (left) and curcumin (right) in the two phases 
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ABSTRACT 
 
The simultaneous population balance equation (PBE) incorporating diverse particulate process aggregation, 
breakage, growth, nucleation and source is a long-standing and significant problem in the field of particulate 
sciences such as pharmaceutical industry, chemical engineering, astrophysics, biology etc. Due to the 
complex and non-linear nature of the governing equations, finding analytical solution is quite challenging for 
empirical kernels. In this work, simultaneous PBEs are solved using   sectional and semi-analytical technique. 
The performance, adaptability and accuracy of both the methods for solving simultaneous PBEs are discussed 
in detail. Both the schemes are further extended to solve simultaneous PBE in multidimensions. Performance 
analysis is also executed for multidimensional models.    
Keywords: Simultaneous population balance equation; Sectional methods; Homotopy analysis method; 
Convergence; Multidimensional models. 
 

1. INTRODUCTION 

The dynamic evolution of particle population within a system is described using a fundamental mathematical 
framework popularly known as population balance equation (PBE). The theoretical and numerical studies of 
PBEs provide a comprehensive description about the change in particle population and its properties over 
time.  Such changes generally occur due to particulate processes such as aggregation, breakage, growth and 
nucleation etc. These processes have significant applications in various fields of science and technology. The 
PBE gives several insights of industrial and natural process. Moreover, Understanding the combined model 
of particulate processes is crucial for interpreting systems which involve multiple phases. 
 
 The PBE describing simultaneous aggregation, breakage, growth, nucleation and other sources is 
represented by an integro-partial differential equation and stated as 
 

𝜕𝑛(𝑡,𝑥)

𝜕𝑡
+  

𝜕[𝐺(𝑡,𝑥)𝑛(𝑡,𝑥)]

𝜕𝑥
=  

1

2
∫ 𝐶(𝑥 − 𝑦, 𝑦)𝑛(𝑡, 𝑥 − 𝑦)𝑛(𝑡, 𝑦)𝑑𝑦 − ∫ 𝐶(𝑥, 𝑦)𝑛(𝑡, 𝑥)𝑛(𝑡, 𝑦)𝑑𝑦 +

∞

0

𝑥

0

         ∫ 𝑏(𝑥, 𝑦)𝑆(𝑦)𝑛(𝑡, 𝑦)𝑑𝑦 − 𝑆(𝑥)𝑛(𝑡, 𝑥) + 𝑁(𝑥) + 𝐵𝑠𝑟𝑐(𝑡, 𝑥)
∞

𝑥
,   

associated with the initial condition 𝑛(0, 𝑥) = 𝑛0(𝑥) ≥ 0, for all 𝑥 ∈ [0, ∞]. The first term on the left hand 
side  of the equation (1) is the time evolution of the particle density 𝑛(𝑡, 𝑥) of 𝑥(≥ 0) size particles at time 
𝑡(≥ 0). The function 𝐺(𝑡, 𝑥) is the rate responsible for particle growth, 𝐶(𝑥, 𝑦) is the aggregation kernel, 
𝑏(𝑥, 𝑦) denotes the breakage function, 𝑆(𝑥) is the selection function, 𝑁(𝑥) is the nucleation rate and source 
term is given by 𝐵𝑠𝑟𝑐 (𝑡, 𝑥). 
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2. MATERIALS AND METHODS 

Due to the wide scope and applications of PBEs, many researchers have attempted to find the analytical or 
numerical solution to these equations. However, PBEs are represented by integro-partial differential 
equations which are either hyperbolic or parabolic in nature. Consequently, these equations exhibit a 
significant degree of complexity and nonlinearity in particular when coupled with aggregation terms. In 
literature, several techniques such as method of characteristics, discrete element method (DEM), stochastic 
methods, method of moments, sectional methods, semi-analytical methods etc. are available.  
 
Above mentioned methods are claimed to be very robust and versatile, however they also come with several 
limitations. Thus, we need a robust analytical technique for which limitations can be minimized without 
compromising the accuracy of the approximated solution. Therefore, in this work, we propose to use the cell 
average technique (CAT) and homotopy analysis method (HAM) for solving simultaneous PBEs. Through this 
study, we attempt to address the following questions: 

1. To which extent these methods produce desirable accurate results without compromising the 
robustness? 

2. How accurately these methods are able to solve simultaneous PBEs, that is, when PBE models include 
more than one particulate processes? 

3. When more than one particle property is considered, what is the efficiency of these methods to solve 
them? 

 

3. RESULTS AND DISCUSSION 

For all the examples, two type of initial distributions are considered: i) exponential and ii) Gaussian initial 
distribution. These initial conditions have specific physical significance in population balance theory. This 
discussion contains six test problems, out of which first five are dedicated to one dimensional problems and 
last one is devoted to multidimensional PBEs. To validate the accuracy and efficiency of the methods HAM, 
HPM and CAT, the numerical particle density and different order moments are compared.  Here, we present 
results for the case where simultaneous aggregation, breakage, growth and source process are considered 
with Gaussian initial condition. 

   
Figure 1: (a) 𝑐0 −curve, (b) comparison of number densities and (c) moments for simultaneous process. 
 

4. CONCLUSIONS 

A comparative study is conducted to evaluate the performance of numerical techniques for solving 
simultaneous population balance models that incorporates various particulate processes simultaneously for 
sectional and semi analytical methods. A thorough investigation effectively tackled the obstacles  
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encountered in solving simultaneous PBEs. Overall, It was observed that HAM outperforms CAT in terms of 
reliability and accuracy. The HAM and CAT approach are extended for solving multidimensional models. HAM 
is more robust to be expandable in higher dimensions as compared to CAT. 
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ABSTRACT 
 
Calcium sulfate dihydrate (gypsum) is one of the most common minerals in nature and is widely used in 

environmental and chemical processes. Different crystalline morphologies of gypsum can have very different 

physical and chemical properties, which gives them great potential for crystal material applications. 

Therefore, crystalline morphological control of gypsum has become a hot topic in scientific research in recent 

years. Researchers established morphological control of gypsum by using various impurities and additives. 

This article investigated the effects of succinic acid used as an additive on gypsum crystallization. The 

experiments were performed in a mixed-suspension mixed-product removal (MSMPR)-type crystallizer at 

different succinic acid concentrations through the reaction of calcium carbonate solution with sulfuric acid 

solution. The crystal size distributions were measured, and the average particle size of gypsum were 

decreased in the presence of succinic acid when compared to the pure media. The kinetics of crystal growth 

of gypsum crystals were analyzed based on McCabe’s L law and the kinetic parameters were evaluated by 

the use of size-independent and size-dependent growth models using population balance theory.  It has been 

found that the growth rate of crystals depends on the particle size, which was specified using ASL, C-R, MJ2, 

and MJ3 size-dependent growth models. Figure 1 shows the linear regression between population density ln 

(n) and crystal size (L) and the relationship of the estimations of different models with experimental data. 

Results demonstrated that the MJ3 model was found to be the best model to characterize the experimental 

data with a high relative coefficient. The presence of succinic acid also led to a decrease in the growth rate 

of gypsum crystals. 

 

 



 

 
2nd Population Balance Modeling Webinar 

25th November 2024, online 
 
 

 

 

   

 

 

Figure 1. Population density evaluation according to the size-independent and size dependent models for 
gypsum crystals. 

 
Keywords: Gypsum; kinetics; crystallization; additive. 
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ABSTRACT 

This research presents a two-step process for liquid-liquid extraction and phase separation, focusing 
on the role of surfactants and droplet behavior in emulsions. It employs a high-order moment-conserving 
method of classes based population balance method (PBM-HMMC) to model single-stage extraction and 
gravitational phase separations of batch oil-water emulsions. The study examines the effects of surfactants 
on droplet interactions, size distribution, coalescence and breakage. Surfactants inhibit coalescence and form 
microemulsions, increasing surface area for mass transfer and enhancing extraction efficiency, but they also 
stabilize emulsions, making phase separation more difficult. Thus, a trade-off exists between extraction 
efficiency and phase separation when surfactants are present. Although the model has yet to be validated 
against experimental data, it aligns with theoretical principles and offers reasonable predictions based on 
current system understanding. 
Keywords: Liquid-Liquid Extraction; Gravitational Phase Separation; Surfactants; Population Balance 
Modeling (PBM); Emulsion Stability. 
 

1. Introduction 
In liquid-liquid dispersion of two immiscible liquids, the population balance method (PBM) effectively tracks 

droplet behavior and size evolution under varying conditions (Lebaz and Sheibat-Othman, 2022). This 
approach is often applied to non-homogeneous systems like stirred tanks and settlers to model droplet 
breakage and coalescence. However, many models overlook the role of surfactants, which stabilize emulsions 
by preventing droplet coalescence (Figure 1), improving mass transfer but complicating phase separation 
(Alopaeus, 2022, Mousavi et al., 2024). This study integrates high-order moment-conserving method of 
classes (HMMC) based PBM with coalescence closure to predict how surfactant concentration and type affect 
the process. Additionally, a settler model based on Stokes' law accounts for droplet-droplet and droplet-
interface coalescence, providing insights into surfactant effects and predicting separation behavior at various 
concentrations. 

 
Figure 1. Visual representation of droplet-droplet coalescence processes in an emulsion due to surfactant, highlighting the 

interaction dynamics between surfactant and droplet interface (Mousavi et al., 2024). 

 

2. Population Balance Model 
In this work the population balance model is used to predict the droplet-droplet coalescence behavior and 

calculating the available surface area for surfactant. It can be expressed as: 
𝑑𝑌𝑖

𝑑𝑡
= 𝐵𝐶 −𝐷𝐶 + 𝐵𝐷 −𝐷𝐷 + 𝑆          1 
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Y represents the droplet numbers within a specific category (i). Bc, Dc, BB and DB are the birth and death 
terms due to coalescence and breakage (subscripts), while S is a sink term accounting for droplets removed 
due to droplet-interface coalescence in phase separation process. Detailed formula derivations and system 
closures, including mass transfer, creaming, coalescence, and dense-packed zone interface height, are 
thoroughly presented in Alopaeus, 2022 and Mousavi et al., 2024. 
 

3. Results and Discussions 
This section explores the impact of varying surfactant concentrations on liquid-liquid extraction and phase 

separation, testing levels of 0, 0.1, 0.2, and 0.3 mol/m³. The results show that increasing surfactant 
concentration changes the droplet size distribution, leading to more available surface area for mass transfer 
and prolonging phase separation time, as higher levels of surfactant stabilize emulsions by preventing droplet 
coalescence. Without surfactant, separation occurs quickly, but at higher concentrations, surface coverage 
increases, reducing droplet size and enhancing the stability of emulsion. Figure 2 illustrates how surfactants 
and surface coverage increase extraction efficiency, delay phase separation and reduce droplet size, aligning 
with the Langmuir isotherm, which suggests that surface coverage increases with surfactant concentration 
until saturation. 

 
(a) 

  
(b) (c) 

Figure 2. Depiction of liquid-liquid extraction and phase separation behavior at varying surfactant 
concentrations. (a) The average droplet size, mass-transfer and extraction efficiency in liquid-
liquid extraction model. (b) Phase separation profile vs time in settler. (c) Surfactant surface 

loading in settler.  
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ABSTRACT 
This work aims to develop a bubble breakup model that includes the impact of energy consumption during 

the eddy-bubble collision/interaction, which significantly affects bubble breakup and is normally neglected 
in previous studies. To establish an improved breakup model, the collision angle 𝜃 and the interaction angle 
𝛿 are adopted to accurately quantify the energy consumption during the collision between smaller eddies 
and bubbles, and the interaction between larger eddies and bubbles, respectively. Generally, energy 
consumption leads to lower breakup frequency and breakup rate. The developed model can be applied to 
precisely predict bubble breakup rate and daughter size distribution under various conditions. 
Keywords: bubble breakup model; energy consumption; collision angle; interaction angle; population 
balance model. 
1. Introduction 

The population balance model (PBM) can give a prediction for bubble size distribution in gas-liquid reactors, 
which has much influence on the mass and heat transfer process (Shu et al., 2019). The model includes 
coalescence model and breakup model. In the breakup model, eddies with a size smaller than the mother 
bubble collide with the bubble, and those with a size larger than the mother bubble interact with the bubble. 
When the breakage criteria are satisfied, bubble breakage will occur. In this study, the energy consumption 
during the collision/ interaction process is considered. The collision angle 𝜃 and the interaction angle 𝛿 are 
used to quantify the consumption. The novel theoretical model is applied to predict the bubble breakup rate 
and daughter size distribution. The influence of the bubble size and turbulence tensity on the daughter size 
distribution are investigated. 
2. Materials and methods 
2.1. Collision/ Interaction frequency 

Based on the analogy with gas kinetic theory, the collision frequency between bubbles and eddies with the 
size of 𝜆 ≤ 𝑑 is expressed as Equation 1(Luo and Svendsen, 1996). Andersson and Andersson (2006) stated 
that eddies with the size of 𝑑 ≤ 𝜆 ≤ 3𝑑 could also interact with the bubbles and bring about bubble breakage. 
In this work, the interaction frequency (as Equation 2) is set proportional to the volume of a bubble with a 
size of 0.5d1. 
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2.2. Breakage criteria 
The surface energy criterion and the force criterion are used to constrain the bubble breakage in this work. 

It means that only if the energy provided by the eddy exceeds the surface energy increase during bubble 
breakage ( ) ( ), availΔ , 1c s ve d f e =  , and meanwhile the inertial force exerted on the bubble exceeds the 

surface tension force 
, avail 1c f   =  , bubble breakage occurs.  

The increase in surface energy during bubble breakage is calculated by, 

( ) ( )
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 
                                                                                                                            (3) 
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Figure 1. Schematic diagram of (a) smaller eddy-bubble collision, and (b) larger eddy-bubble interaction 

As shown in Figure 1, the available energy that transfers from an eddy to a bubble is expressed as,  
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The interfacial force needs to be overcome by eddies in the breakup process can be calculated as, 
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It can also be known from Figure 1 that the inertial force cannot fully act on the bubble. The available 
inertial force exerted on the bubble is expressed as, 
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2.3. Breakage probability, breakup frequency, and daughter bubble size distribution 
Combining those two breakage criteria, the breakage probability can be calculated as, 

( ) ( ) ( )0 , ,, 1 exp( ) e max( , )xp expc

B v c c s c fP f d d
     = −  − = − = −∣                                                                                   (8) 

The total bubble breakup rate Ω(𝑑)  , the breakup frequency b(𝑑) , and the daughter bubble size 
distribution 𝛽(𝑓𝑣 , 𝑑) are described as Equations (9) to (11), respectively. 
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3. Results and discussion 
3.1. Bubble breakup frequency 

 

Figure 2. Collision/ Interaction frequency of dimensionless eddy scale with (a) the same mother bubble 
size (d = 4 mm), and (b) the same turbulent dissipation rate (𝜀 = 5𝑚2 𝑠3⁄  ). 
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Herein, the effect of the interaction volume on the interaction frequency is shown in Figure 2. The influence 

of the turbulence tensity and the bubble scale are illustrated in Figures 2(a) and (b), respectively. 
3.2. Breakup rate and daughter size distribution 

The predicted dimensionless breakup rate is compared with experiment results (Krishna et al., 1991; 
Martínez-Bazán et al., 1999; Vejražka et al., 2018; Zednikova et al., 2019; Zhang et al., 2023), as shown in 
Figure 3(a). The prediction results of this work are in accordance with the experimental data from Vejražka 
et al. (2018). The predicted daughter size distribution is compared with the DNS results from Rivière et al. 
(2021), as seen in Figure 3(b). The influence of the We number, which represents the bubble size or 
fluctuation tensity, on the daughter size distribution is also shown in Figure 3(b). 

 

Figure 3. Comparison of predicted and measured (a) dimensionless bubble breakup rate and (b) daughter 
size distribution. 

4. Conclusions 
Energy consumption during the eddy-bubble collision/ interaction is pointed out and considered in the 

bubble breakup model derivation. The surface energy criterion and force criterion are considered to 
constrain the bubble breakup. The conclusions obtained in this work are as follows: a) With the addition of 
𝜃  , the bubble breakup probability becomes lower. b) The new model proposed is applicable for the 
prediction of bubble breakup in a bubble column. c) With the increase of the turbulence tensity, bubbles 
tend more to break up equally, though most bubbles still tend to break into two daughter bubbles with 
unequal volume. 
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ABSTRACT 
The increasing demand for electric vehicles and energy storage systems has led to an increase in 

battery production, consequently generating a growing volume of spent batteries. To address the 
environmental and economic challenges associated with battery waste, efficient and sustainable recycling 
processes are crucial. This study focuses on developing a population balance model (PBM) to simulate and 
optimize metal recovery from spent batteries through crystallization. In the context of battery recycling, 
crystallization offers a promising approach for recovering valuable metals. The population balance equation 
(PBE) provides a comprehensive framework for understanding and predicting particle size distribution (PSD) 
in crystallization process. This study focuses on developing a PBM to simulate and optimize the 
crystallization process for metal recovery. This model solves a discretized formulation of the PBE to obtain 
the crystal size distribution from crystallization of nickel sulfate in a 3D T-mixer. 
 

 
Keywords: population balance model; metal recovery; battery recycling; crystallization; particle size 
distribution. 
 

1. Introduction 
 
As our society is moving towards electrification the demand for energy storage solutions such as batteries 

is on the rise. Lithium-ion batteries, while essential for energy storage, pose significant recycling challenges 
due to scarcity and valuable constituent metals. To achieve a circular economy and sustainable use of 
batteries, novel and improved recycling processes need to be developed. Crystallization, a proven 
technique for purifying and separating substances, emerges as a promising approach for recovering 
valuable metals from spent batteries. In a crystallisation process, crystal population can be described by its 
size distribution which gives information regarding the number of crystals at certain particle sizes/volumes. 
Particle size distribution (PSD) significantly impacts the product quality, with factors such as filterability, 
solubility, and purity getting influenced by it. To optimize product characteristics, precise control and 
prediction of PSD are essential. 
The population balance equation (PBE) is a powerful mathematical tool for describing the evolution of 

particle populations. By incorporating nucleation, growth, aggregation, and breakage, the PBE provides a 
comprehensive framework for understanding PSD. This necessitates advanced simulation tools capable of 
accurately capturing the complex interplay of these phenomena. By considering thermodynamic and kinetic 
factors, crystal size and shape distributions is predicted, enabling effective process design and control. 
This work focuses on applying the PBE, coupled with the computational fluid dynamics (CFD), to simulate 

the evolution of particle population in a continuous reactor configuration. A 3D T-mixer is employed to 
investigate the impact of reactor hydrodynamics on nickel sulfate crystallization (Schwarzer and Peukert, 
2004; Tang et al., 2022). By understanding the underlying mechanisms governing growth kinetics, this 
research aims to contribute to the development of advanced crystallization processes for improved product 
quality, higher yields, and reduced energy consumption, particularly in the context of battery recycling. 
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2. Model definition 
 

The approach presented in this report implements discretization as the chosen method for solving the 
PBE (Qamar et al., 2006). The PBE is discretized into i intervals as given by Equation 1. 

                                
  

  
        

             

  
 

 

  
               

                                     

(1) 
Geometric grid method is implemented to discretise the internal coordinate of the PBE (Equation 2). 

                                                                           
     

                                                                          

(2)                                   
The described numerical approach is applied to simulate crystallization within a 3D tubular T-mixer, 
characterized by defined geometry and inlet conditions, at a Reynolds number of 255 (Figure 1(a)). 
Nucleation and breakage are not considered in the model; instead, seeds are introduced with a starting 
particle size of 7.8 µm. Crystal growth (G) is described by a simplified size-independent power-law model, 
where g and kg are fitted parameters, with the final model expressing crystal growth as a function of 
supersaturation (S) at 25°C given as 

                                                                                                                                                                (3)                                   
The crystallization reaction is modelled with Chemistry interface and PBE is solved using Stabilized 
Convection-Diffusion equations in 3D, with additional source terms for growth. The numerical approach is 
implemented using COMSOL Multiphysics® version 6.2. 

 
3. Results and discussions 

 
The flow field exhibited significant mixing, with the flow initially dividing into quadrants before becoming 

more uniform along the channel length (Figure 1(b)-(c)). Supersaturation profiles revealed an even 
distribution along the channel length in 3D model, resulting in a narrower crystal size distribution at the 
outlet (Figure 1(d)). Supersaturation values were higher, potentially due to enhanced mixing efficiency. The 
corresponding crystal size distribution exhibited local regions of larger crystals within the mixing zone, 
reflecting the spatial variations in supersaturation. These findings highlight the importance of considering 
3-D effects for accurate prediction of crystal size distribution in T-mixer systems. 

Figure 1.  a) Geometry for the 3D T-mixer; contour plots shown at a center cut plane inside the T-mixer (Re 
= 255): b) nickel sulfate crystallization, c) streamline plot, and d) supersaturation. 
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ABSTRACT 
Batch cooling crystallization is a crucial step in lactose production, a key ingredient in pharmaceuticals and 

many food products. This study presents an investigation of the kinetics involved. A one-dimensional 

population balance model is employed to track the time-dependent evolution of lactose crystals. The kinetic 

parameters for the crystallization process are estimated based on experimental data using process analytical 

technology (PAT). Growth, nucleation, and agglomeration kinetics are estimated. To accurately track 

concentration depletion, respectively growth, in the presence of agglomeration a reduced order model is 

developed. Within this model reduction, surface area development is tracked separately in a second 

population balance. The model demonstrates a significant improvement in aligning experimental results with 

simulations compared to a basic one-dimensional population balance model.  

Keywords: population balance model, model reduction, crystallization, parameter estimation 

1. Introduction 
Lactose crystallization has been practiced for over a century (Paterson 2009). However, a detailed 

understanding of this process is still lacking despite its long history. One reason for this knowledge gap is the 
varied initial compositions involved. Lactose can be crystallized from whey or whey permeate, derived from 
sweet or acidic whey, or even from almost pure water for pharmaceutical recrystallization (Paterson 2009). 
Moreover, the crystallization encompasses multiple simultaneous processes, including nucleation, growth, 
aggregation, and mutarotation. The latter is unique to some organic sugars, like lactose, as it exists in two 
anomeric forms, with only one form crystallizing during the cooling crystallization process. These anomers 
can interchange in solution through an equilibrium reaction known as mutarotation. In this study, we utilize 
a population balance framework to develop a model for lactose crystallization.  

2. Methods 
A one-dimensional population balance (1D) model with particle volume as the characteristic variable 

describes crystal evolution, assuming a perfectly mixed batch reactor, no growth-rate dispersion, and 
negligible breakage. Mass balances connect the liquid concentrations of α- and β-lactose with the population 
balance and consider mutarotation. The model accounts for growth, mutarotation, nucleation, and 
agglomeration kinetics. However, in a 1D population balance, the surface area of agglomerated particles is 
smaller than the sum of the surface areas of the primary particles, as only volume is conserved. In systems 
with significant agglomeration, this leads to under-predicting concentration depletion (Kovačević and Briesen 
2019). To address this, a two-dimensional population balance could be used to preserve surface area, but 
this comes with a significantly higher computational cost. Instead, a novel reduced-order model consisting of 
two 1D population balances is applied. The first PBM tracks the evolution of the number density distribution, 
while the second PBM tracks the area density distribution, ensuring that the surface area of the primary 
particles is conserved during agglomeration (see Figure 1). The necessary kinetic parameters for the 
crystallization process were obtained through parameter estimation, minimizing the sum of squared 
residuals between experimental and simulation data. 

 

mailto:ramona.bier@tum.de


 

 
2nd Population Balance Modeling Webinar 

25th November 2024, online 
 
 

 

 

   

 

 

Figure 1. Scheme showing the model reduction from 2D to two 1D population balances providing average 

area data 𝑎̅(𝑣, 𝑡) 

3. Results and discussion 
 Various kinetic expressions for secondary nucleation and agglomeration were evaluated during the 
model development and parametrization process. While incorporating agglomeration into the 1D population 
balance model (PBM) improved the model's fit to experimental data, it also overestimated the final lactose 
concentration in the solution. This overestimation arises because the 1D PBM conserves particle volume 
during agglomeration but not surface area. In contrast, the reduced-order model preserves the total surface 
area of the original particles during agglomeration. This implies that the crystals are assumed to fuse at a 
single point instead of fully coalescing. The improvement in model accuracy is demonstrated in Figure 2, 
which compares the standard 1D PBM solution with the adapted 1D PBM simulation. The final concentration 
predicted by the adapted model aligns closely with the experimental results, whereas the standard model 
overestimates the final concentration by 14%. Additionally, the alignment of the final volume density 
distribution is improved. 

 
Figure 2. From left to right: Lactose load 𝑐, particle density 𝜇0/𝑉𝑙𝑖𝑞 over time 𝑡 and normalized final volume 

density distribution 𝑞3(𝐿) as measured in the experiment (line) and calculated by simulation (dashed) with 
the standard PBM (blue) and the adapted PBM (orange) for one exemplary crystallization experiment 

4. Conclusions 
In conclusion, this study presents a comprehensive model for lactose crystallization that accurately 

captures the key processes: nucleation, growth, mutarotation, and agglomeration. Introducing a reduced-
order model significantly improves the accuracy of simulations, aligning closely with experimental data. This 
model enhances our understanding of lactose crystallization and provides a solid foundation for optimizing 
industrial crystallization processes. 
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ABSTRACT 
Double-emulsions (DEs) are liquid-liquid dispersions that consist of one emulsion dispersed within a 

continuous phase. Common types of DEs include water-in-oil-in-water (w/o/w) and oil-in-water-in-oil 
(o/w/o) systems. They are typically stabilized by the addition of surfactants at the inner and outer droplets 
interfaces. DEs can be employed in a wide array of fields including the preparation of reduced-fat food 
products, pollutant removal in wastewater treatment (i.e. extraction), and encapsulation of active materials 
in biological and pharmaceutical processes. 
In general, DEs are prepared following the two-step method. In the first step a primary emulsion (i.e., 

internal emulsion), is prepared by dispersing the inner phase into an intermediate phase. This is accomplished 
under high shear rates using energy-consuming devices such as rotor-stators, high-pressure homogenizers, 
and ultrasonicators, which generate small droplets. In the second step, the obtained emulsion is dispersed 
into a continuous phase under lower energy rates. This step can be performed in low energy-consuming 
devices (e.g., stirred tank, rotor-stator) to avoid extracting the inner emulsion.   
Our study focuses on the preparation of w/o/w double emulsions for encapsulation purposes. First, a w/o 

primary emulsion (water in silicone oil) is prepared using an Ultraturrax (rotor-stator device) in the presence 
of a lipophilic surfactant (ABIL EM 97S). This emulsion is then dispersed in water in a 1 L stirred tank equipped 
with a Rushton-type impeller, where the macro (outer) drops are stabilized by a hydrophilic surfactant 
(Tween® 20) (at the interface between the w/o emulsion drops and external water). Sodium Chloride (NaCl) 
salt is used as a model encapsulated material dissolved in the inner water. NaCl here serves two purposes: it 
acts as a tracer to track the release kinetics of the encapsulated material and a regulator of the osmotic 
pressure as it counterbalances the Laplace pressure to prevent the collapse or swelling of the DEs. The 
experiments are carried out under various operating conditions and compositions to investigate their effect 
on the release. These parameters include the viscosity of the oil phase, the inner water content, the 
concentration of lipophilic and hydrophilic surfactants, the mixing intensity (N) during the second step of 
preparation, the inner droplet size, and the holdup. The formation of DEs is monitored using an in situ probe 
camera (SOPAT®) and the temporal evolution of the droplet size distribution (DSD) is obtained by a machine-
learning-based algorithm developed by Bana et al. (2024). The rate of release is probed by means of a 
conductivity meter submerged in the stirred tank. This setup allows the measurement of the continuous 
phase conductivity (given that oil is non-conductive), which is directly correlated to the amount of salt 
released during the preparation.  
In addition, a model for the release kinetics during the second preparation step is proposed. Release of the 

inner droplets can occur via two possible routes. First, since the DEs droplets are subjected to agitation, the 
macro-drops are prone to breakage, after which the micro-droplets may leak at a rate 𝑅leakage. Second, the 

micro-droplets near the surface can escape due to the coalescence of the inner water droplets with the 
continuous aqueous phase at the oil surface, occurring at a rate 𝑅escape. It is important to note that the NaCl 

solubility in oil is negligible, hence the molecular diffusion of NaCl out of the microdroplet is insignificant.  
In a previous study, Khadem and Sheibat-Othman (2019) modeled the release kinetic of double emulsions 

prepared in the second step using an Ultraturrax for a short time (4-16 min) and concluded that the breakage 
of macro-drops was the main mechanism behind the release. Accordingly, they suggested a model with 
𝑅leakage  ∝ 𝑅breakage. However, our experiments suggest that the release may result from the simultaneous 

breakage of macro drops and coalescence of micro-droplets with the external water phase. This is due to the 
lower energy dissipation in the stirred tank and longer preparation period compared to the previous work, 
where the surface coalescence is not negligible.  
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Figure 1 represents the temporal evolution of the Sauter mean diameter (𝑑32, left y-axis) and the fraction 
of salt released (right y-axis). The DE is prepared at 𝑁 =  300 rpm for 2 hrs then kept under light agitation 
(190 rpm) for a couple more hours. It can be discerned that during the initial stage (𝑁 =  300 rpm) and 
because of the important breakage of macro-droplets, 𝑑32 gradually decreases over nearly 1.3 h (the 
boundary between the white and green areas), while the amount of released salt increases. This suggests 
that breakage contributes to the release at this stage. After that point, 𝑑32 remains constant while the 
amount of released salt continues to increase, albeit at a lower rate, as indicated by the decrease in the slope 
of the black dashed line. This suggests that another phenomenon is taking place.  

 
Figure 1. Temporal evolution of the Sauter mean diameter( 𝑑32) of the DE and the % of released salt  

One might think that equilibrium of droplet size is reached after 1.3 h with the breakage of the macro-
droplets being counterbalanced by their coalescence, implying that breakage is always behind the release.  
However, when 𝑁 was set to 190 rpm -a condition that stops the breakage of macro-drops-  𝑑32 does not 
vary which eliminates the possibility of macro-drops coalescence. This is certainly due to the amount of 
surfactant added and the dilute conditions of preparation (holdup < 3 wt.%). Hence, a possible reason for the 
further increase in the released salt is the diffusion and coalescence of the inner micro-droplets with the 
external phase. This phenomenon seems to be more prevalent throughout the preparation step in the stirred 
tank, compared to the leakage phenomenon. However, both should be included in the release model.  
Based on this reasoning, the population balance equation for the volume-based number density function 

𝑛(𝑡, 𝑣) of the macro-drops (cf. Eq. (1)) is coupled to that of micro-droplets (cf. Eq. (2)). In these equations, 𝑅 
stands for rate, 𝑄 the volumetric flow rate and 𝑣 the volume of drops. Finally, the amount of salt released 
can be calculated based on Eq. (3) where 𝑁 is the total number of moles of NaCl encapsulated and 𝐶 is the 
its concentration. 
 
𝜕𝑛macro(𝑡, 𝑣 )

𝜕𝑡
+

𝜕(𝑄release(𝑡, 𝑣)𝑛macro(𝑡, 𝑣))

𝜕𝑣
= 𝑅breakage (1) 

𝜕𝑛micro(𝑡, 𝑣 )

𝜕𝑡
= −𝑅release(𝑡, 𝑣) = −𝑅leakage(𝑡, 𝑣) − 𝑅escape(𝑡, 𝑣) (2) 

𝑑𝑁

𝑑𝑡
= −𝐶𝑠𝑎𝑙𝑡 × 𝑄release = − ∫ 𝑅release(𝑡, 𝑣)𝑣𝑑𝑣

∞

0

 (3) 

 
Keywords: Double-emulsions, Stirred tank, Encapsulation, Release, Population Balance Modeling. 
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ABSTRACT 

In this study, we apply coupled population balance modeling to investigate fungal-bacterial interactions in 
a co-cultivation and study how different interactions mechanisms alter the metabolic pathways. Two models 
are developed to represent distinct mechanisms: one based on the detection of signaling compounds in the 
solution, and the other via cell-to-cell contact between microorganisms. This work provides us a deeper 
understanding of microbial behavior and their kinetic mechanisms in the co-cultivation process. 
Keywords: coupled population balance model; co-cultivation; microorganism interaction; metabolite 
pathway activation 
 

1. Introduction 
 

Actinomycetes and filamentous fungi are widely-recognized as a cell factory for producing and secreting 
proteins, organic acids, and secondary metabolites. Extensive genomic investigations have shown that many 
of their potential metabolite products remain unexplored. To discover novel metabolites, fungal bacterial co-
cultivation is often employed to mimic natural interactions between different species, which can trigger the 
production of secondary metabolites not observed in monocultures.  

The alterations in metabolic pathways during co-cultivation can be distinguished between two primary 
mechanisms (Deveau et al. 2018): 

1. Signal Compounds: One microorganism secretes signal compounds that, upon detection by another, 
induce changes in its metabolic pathway. This results in the production of novel metabolites not present 
in monocultures. 

2. Cell-to-Cell Contact: During direct interactions between microorganisms, specific outer membrane 
proteins on the cell membrane influence the physiological responses of neighboring microorganisms. 

This study proposes a new expression to describe changes in metabolite pathways resulting from fungal-
bacterial interactions during co-cultivation. The influence of various hydrodynamic conditions is studied, 
which lead to different concentration profile of the novel metabolite.  
 

2. Methods 
 

In the model, fungi and bacteria in submerged culture are represented as porous spherical pellets 
characterized by their volume. Two conceptually different PBM formulations are used to represent the 
bacterial-fungal interaction mechanisms (see Table 1). In both mechanisms, the pellets undergo growth, 
denoted as 𝐺. For the signal compounds mechanism, bacteria gradually secrete signaling compounds, and 
fungi are activated immediately upon detecting these signals. The formation rate of the novel metabolite 
after pathway activation is modeled using the Luedeking-Piret model (Gomes et al. 2014) and depends on 
the total fungal biomass. In the cell-to-cell contact mechanism, fungi are categorized as non-activated or 
activated. Collisions between fungi and bacteria lead to flux exchanges between non-activated and activated 
fungi, with the collision kernel denoted as 𝑓஺ଵ஻. The formation rate of novel metabolite is primarily driven by 
the activated fungi.  

Table 1. The PBM formulations for two bacterial-fungal interaction mechanisms. 

Signal Compounds Cell-to-Cell Contact 
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Fungi (A):  
 డேಲ(௩ಲ,௧)

డ௧
+

డ[ீಲ(௩ಲ)∙ேಲ(௩ಲ,௧)]

డ௩ಲ
= 0 

Bacteria (B): 
 డேా(௩ా,௧)

డ௧
+

డ[ீా(௩ా)∙ேా(௩ా,௧)]

డ௩ా
= 0 

Signaling compound (S): 
𝜕𝑐ୗ

𝜕𝑡
=   αௌ ∙

𝜕𝑐ୗ

𝜕𝑡
+  𝛽ௌ ∙ 𝑐ୗ 

Fungi before the activation of new metabolite pathway (A1): 
 డேಲభ(௩ಲభ,௧)

డ௧
+

డ[ீಲభ(௩ಲభ)∙ேಲభ(௩ಲభ,௧)]

డ௩ಲభ
= −𝑁஺ଵ(𝑣஺ଵ, 𝑡) ∙ ∫ 𝑓஺ଵ஻(𝑣஺ଵ,  𝑣஻

∗ ) ∙ 𝑁஻(𝑣஻
∗ )𝑑𝑣஻

∗ஶ

଴
 

Fungi after the activation of new metabolite pathway (A2):  
 డேಲమ(௩ಲమ,௧)

డ௧
+

డ[ீಲమ(௩ಲమ)∙ேಲమ(௩ಲమ,௧)]

డ௩ಲమ
= +𝑁஺ଵ(𝑣஺ଶ, 𝑡) ∙ ∫ 𝑓஺ଵ஻(𝑣஺ଶ,  𝑣஻

∗ ) ∙ 𝑁஻(𝑣஻
∗ )𝑑𝑣஻

∗ஶ

଴
 

Bacteria (B): 
 డே𝐁(௩𝐁,௧)

డ௧
+

డ[ீ𝐁(௩𝐁)∙ே𝐁(௩𝐁,௧)]

డ௩𝐁
= 0 

Novel metabolite product (X) 

 
డ௖౔

డ௧
= ( α௑ ∙

డ௖ఽ

డ௧
+  𝛽௑ ∙ 𝑐୅) ∙

𝑐𝑠

𝐾𝑋,𝑖+𝑐𝑠
 

Novel metabolite product (X) 

 
డ௖౔

డ௧
=  α ∙

డ௖ఽమ

డ௧
+ 𝛽 ∙ 𝑐୅ଶ 

 
 

3. Selected results and Discussion 
 

Using the PBMs described above, we simulated the co-cultivation of microorganisms under different 
interaction mechanisms and observed parameters that can be experimentally measured. A Cell-to-Cell 
Contact model with a constant collision kernel was compared with the Signal Compounds model (Figure 1). 
The biomass-specific concentration of the novel metabolite showed varying trends between the two models. 
In the Signal Compounds model, where all fungi are activated immediately, the concentration of the novel 
metabolite increases much more rapidly. In contrast, in the Cell-to-Cell model, only a few fungi are activated 
initially, leading to a slower concentration rise. However, at later time points, both models exhibit a similar 
concentration curve, as all fungi eventually become activated. 

 

      
Figure 1. Simulation results for changes in metabolite pathways: (left) through signal compounds and 

(right) via cell-to-cell contact. The plots show the biomass-specific concentration of the novel metabolite 
and the cell dry weight (CDW). 

 
4. Conclusion 

 
In this study, we introduced new expressions for population balance models to describe changes in 

microbial metabolic pathways due to interactions with signaling compounds and physical cell-to-cell contact. 
These new models provide deeper insights into the underlying mechanisms of these interactions, enhancing 
our understanding of microbial behavior in co-cultivation. 
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ABSTRACT 
This work presents an optimization approach to identify agglomeration and breakage kernels for a 

discrete population balance equation (dPBE) using particle size distribution (PSD) data. The study focuses 
on a two-dimensional dPBE with eight kernels requiring optimization. The optimization is performed within 
a parallelized Ray Tune framework, assessing the impact of different optimization methods and 
hyperparameters. PSDs generated by the dPBE were used as training targets for model validation. Results 
demonstrate the efficiency of the optimization framework in accurately determining the kernels.   
 

 
Keywords: Discrete Population Balance Equation; Agglomeration and Breakage Kernels; Particle Size 
Distribution; Optimization Framework; Ray Tune. 
 

1. Motivation 
 
The discrete Population Balance Equation (PBE) based on material volume can effectively track the 

evolution of particle size distribution (PSD) across different components and sizes in various processes, such 
as material separation and battery slurry preparation. The accuracy of the PBE model's predictions is 
heavily dependent on the kernels, which are challenging to measure experimentally or calculate analytically 
with precision.  
To address this challenge, this paper proposes an optimization framework based on PSD data to determine 

the kernels. The framework accepts PSD data from single or binary materials and returns their 
corresponding kernels. To quantify the error between the optimized kernels and the true values, a dataset 
generated by the dPBE with various kernel combinations is used for training. This dataset is also employed 
to test hyperparameters within the optimization framework, offering a comprehensive overview of its 
performance. 
 

2. Methods 
 

2. 1. Population Balance Equation 
In this work, we consider a homogeneous system where both agglomeration and breakage processes 

occur, leading the PBE to include only agglomeration and breakage terms on its right-hand side. The 
equation is discretized using the cell average technique of Kumar [1], which allows for the use of a coarse 
grid to cover systems with a wide range of particle volumes while maintaining computational accuracy. The 
agglomeration rate and breakage rate are calculated using a Power law model, with collision efficiency 
modeled by Collision case model (Rhein 2019 [2]). For the breakage function, a Parabolic form in is 
employed.  
2. 2. Optimization Framework 
Figure 1 illustrates the general flow of the optimization framework. The primary objective of the 

optimization framework is to identify a set of kernels such that the PSD calculated by the dPBE using these 
kernels has the minimal error when compared to the target PSD. The optimization framework supports 
input from both 1D and 2D PSD data, with a particular emphasis on 2D PSD. A method was implemented 
that combines 2D-PSD data with the 1D-PSD of each material individually. This integrated approach has 
proven to significantly improve the optimization outcomes, resulting in more precise kernel determination. 

mailto:haoran.ji@kit.edu
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Given that optimizing multiple kernels typically requires numerous iterative steps, improving 
computational efficiency is essential. To address this, the framework employs Ray Tune [3], which supports 
parallelized optimization algorithms. Additionally, Ray, as a large-scale distributed computation platform, 
has the capability to handle the simultaneous optimization of multiple PSD datasets, further enhancing 
processing efficiency. 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. General process of optimization framework. 

3. Results 
 
The optimization framework was tested against a comprehensive dataset. To ensure the generality of the 

test, the dataset was generated using reasonable combinations of kernel values. The impact of different 
optimization algorithms, iteration counts, and optimization criteria on the results was thoroughly 
evaluated, as shown in Figure 2. Following this, a correlation analysis was conducted to explore the 
relationship between the error in the optimized kernels and the error in the PSD itself. This correlation 
analysis provides a foundation for the correct application of the framework and offers insights for further 
optimizing its functionality. 
 

 

 

 
 
 
 
 
 
 
 

Figure 2. Impact of the optimization algorithm and the iteration step on the obtained kernels. 
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